Department of Earth, Ocean and Atmospheric Sciences, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada. Planetary Science Institute, Tucson, AZ 85719, USA.
Planetary Science Directorate, Southwest Research Institute, Boulder, CO 80302, USA.
Science. 2015 May 22;348(6237):892-5. doi: 10.1126/science.aaa8720. Epub 2015 May 7.
Magnetized rocks can record the history of the magnetic field of a planet, a key constraint for understanding its evolution. From orbital vector magnetic field measurements of Mercury taken by the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft at altitudes below 150 kilometers, we have detected remanent magnetization in Mercury's crust. We infer a lower bound on the average age of magnetization of 3.7 to 3.9 billion years. Our findings indicate that a global magnetic field driven by dynamo processes in the fluid outer core operated early in Mercury's history. Ancient field strengths that range from those similar to Mercury's present dipole field to Earth-like values are consistent with the magnetic field observations and with the low iron content of Mercury's crust inferred from MESSENGER elemental composition data.
磁化岩石可以记录行星磁场的历史,这是了解行星演化的关键约束条件。我们利用“信使”号飞船在低于 150 公里的高度上对水星的轨道矢量磁场进行了测量,探测到了水星地壳中的剩余磁化强度。我们推断出磁化作用的平均年龄下限为 37 亿到 39 亿年。我们的发现表明,由外核流体中的发电机过程驱动的全球性磁场在水星历史的早期就已经存在。磁场强度从类似于水星当前偶极场的强度到类似于地球的磁场强度都与磁场观测结果以及“信使”号元素组成数据推断出的水星地壳中铁含量低的情况一致。