Peterson Georgia A, Johnson Catherine L, Jellinek A Mark
Department of Earth, Ocean and Atmospheric Sciences, University of British Columbia, Vancouver, BC V6T 1Z4, Canada.
Planetary Science Institute, Tucson, AZ 86819, USA.
Sci Adv. 2021 Oct;7(40):eabh2482. doi: 10.1126/sciadv.abh2482. Epub 2021 Oct 1.
Mercury’s early evolution is enigmatic, marked by widespread volcanism, contractional tectonics, and a magnetic field. Current models cannot reconcile an inferred gradual decrease in the rate of radial contraction beginning at ~3.9 billion years (Ga) with crustal magnetization indicating a dynamo at ~4 to 3.5 Ga and the production of extensive volcanism. Incorporating the strong cooling effects of mantle melting and effusive volcanism into an exhaustive thermal modeling study, here, we show that early, voluminous crustal production can drive a period of strong mantle cooling that both favors an ancient dynamo and explains the contractional history of the planet. We develop the first self-consistent model for Mercury’s early history and, more generally, propose an approach to assess the volcanic control over the evolution of any terrestrial planet or moon.
水星的早期演化充满谜团,其特征是广泛的火山活动、收缩构造和磁场。目前的模型无法协调推断出的约39亿年前开始的径向收缩速率的逐渐下降,与表明在约40亿至35亿年前存在发电机效应的地壳磁化以及广泛火山活动的产生之间的矛盾。在此,我们将地幔熔化和溢流火山作用的强烈冷却效应纳入一项详尽的热模拟研究中,结果表明早期大量的地壳形成能够驱动一段强烈的地幔冷却期,这既有利于古老的发电机效应,又能解释该行星的收缩历史。我们开发了首个关于水星早期历史的自洽模型,更广泛地说,提出了一种评估火山活动对任何类地行星或卫星演化控制作用的方法。