Suppr超能文献

根据美国医学院协会(AAMC)老年医学能力对医学生临床接触情况的自动评估

Automated Assessment of Medical Students' Clinical Exposures according to AAMC Geriatric Competencies.

作者信息

Chen Yukun, Wrenn Jesse, Xu Hua, Spickard Anderson, Habermann Ralf, Powers James, Denny Joshua C

机构信息

Department of Biomedical Informatics, Vanderbilt University, Nashville, TN.

School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX ; Department of Biomedical Informatics, Vanderbilt University, Nashville, TN.

出版信息

AMIA Annu Symp Proc. 2014 Nov 14;2014:375-84. eCollection 2014.

Abstract

Competence is essential for health care professionals. Current methods to assess competency, however, do not efficiently capture medical students' experience. In this preliminary study, we used machine learning and natural language processing (NLP) to identify geriatric competency exposures from students' clinical notes. The system applied NLP to generate the concepts and related features from notes. We extracted a refined list of concepts associated with corresponding competencies. This system was evaluated through 10-fold cross validation for six geriatric competency domains: "medication management (MedMgmt)", "cognitive and behavioral disorders (CBD)", "falls, balance, gait disorders (Falls)", "self-care capacity (SCC)", "palliative care (PC)", "hospital care for elders (HCE)" - each an American Association of Medical Colleges competency for medical students. The systems could accurately assess MedMgmt, SCC, HCE, and Falls competencies with F-measures of 0.94, 0.86, 0.85, and 0.84, respectively, but did not attain good performance for PC and CBD (0.69 and 0.62 in F-measure, respectively).

摘要

能力对于医疗保健专业人员至关重要。然而,目前评估能力的方法并不能有效地反映医学生的经历。在这项初步研究中,我们使用机器学习和自然语言处理(NLP)从学生的临床记录中识别老年医学能力暴露情况。该系统应用NLP从记录中生成概念和相关特征。我们提取了与相应能力相关的精炼概念列表。该系统通过10折交叉验证对六个老年医学能力领域进行了评估:“药物管理(MedMgmt)”、“认知和行为障碍(CBD)”、“跌倒、平衡、步态障碍(Falls)”、“自我护理能力(SCC)”、“姑息治疗(PC)”、“老年人医院护理(HCE)”——每个都是美国医学院协会对医学生的能力要求。该系统可以分别以0.94、0.86、0.85和0.84的F值准确评估MedMgmt、SCC、HCE和Falls能力,但对于PC和CBD(F值分别为0.69和0.62)的表现不佳。

相似文献

2
Using natural language processing to provide personalized learning opportunities from trainee clinical notes.
J Biomed Inform. 2015 Aug;56:292-9. doi: 10.1016/j.jbi.2015.06.004. Epub 2015 Jun 10.
4
Geriatric palliative care: do medical students' narrative reflections after a hospice clinical experience link to geriatric competencies?
Gerontol Geriatr Educ. 2013;34(4):329-41. doi: 10.1080/02701960.2013.815180. Epub 2013 Aug 25.
6
Automatic scoring of medical students' clinical notes to monitor learning in the workplace.
Med Teach. 2014 Jan;36(1):68-72. doi: 10.3109/0142159X.2013.849801. Epub 2013 Nov 7.
8
Intern Boot Camp: Feasibility and impact of a 1-hour session to ensure graduating medical student competency in falls risk assessment.
Gerontol Geriatr Educ. 2017 Jul-Sep;38(3):346-353. doi: 10.1080/02701960.2015.1115982. Epub 2016 Feb 17.

引用本文的文献

1
Ten tips to harnessing generative AI for high-quality MCQS in medical education assessment.
Med Educ Online. 2025 Dec;30(1):2532682. doi: 10.1080/10872981.2025.2532682. Epub 2025 Jul 17.
2
Applications of Artificial Intelligence in Medical Education: A Systematic Review.
Cureus. 2025 Mar 1;17(3):e79878. doi: 10.7759/cureus.79878. eCollection 2025 Mar.
3
Comparing Scoring Consistency of Large Language Models with Faculty for Formative Assessments in Medical Education.
J Gen Intern Med. 2025 Jan;40(1):127-134. doi: 10.1007/s11606-024-09050-9. Epub 2024 Oct 14.
4
Utilizing natural language processing to analyze student narrative reflections for medical curriculum improvement.
Med Teach. 2025 Jun;47(6):970-975. doi: 10.1080/0142159X.2024.2390034. Epub 2024 Aug 20.
5
The Global Use of Artificial Intelligence in the Undergraduate Medical Curriculum: A Systematic Review.
Cureus. 2023 May 30;15(5):e39701. doi: 10.7759/cureus.39701. eCollection 2023 May.
6
Machine Scoring of Medical Students' Written Clinical Reasoning: Initial Validity Evidence.
Acad Med. 2021 Jul 1;96(7):1026-1035. doi: 10.1097/ACM.0000000000004010.
7
Automated Comparison of Pathology Reports for On-the-job Assessment of Residents.
AMIA Jt Summits Transl Sci Proc. 2019 May 6;2019:495-504. eCollection 2019.
9
Clinical information extraction applications: A literature review.
J Biomed Inform. 2018 Jan;77:34-49. doi: 10.1016/j.jbi.2017.11.011. Epub 2017 Nov 21.

本文引用的文献

1
Automatic scoring of medical students' clinical notes to monitor learning in the workplace.
Med Teach. 2014 Jan;36(1):68-72. doi: 10.3109/0142159X.2013.849801. Epub 2013 Nov 7.
2
Using machine learning for concept extraction on clinical documents from multiple data sources.
J Am Med Inform Assoc. 2011 Sep-Oct;18(5):580-7. doi: 10.1136/amiajnl-2011-000155. Epub 2011 Jun 27.
3
Automated concept-level information extraction to reduce the need for custom software and rules development.
J Am Med Inform Assoc. 2011 Sep-Oct;18(5):607-13. doi: 10.1136/amiajnl-2011-000183. Epub 2011 Jun 22.
4
Hybrid methods for improving information access in clinical documents: concept, assertion, and relation identification.
J Am Med Inform Assoc. 2011 Sep-Oct;18(5):588-93. doi: 10.1136/amiajnl-2011-000154. Epub 2011 May 19.
5
Machine-learned solutions for three stages of clinical information extraction: the state of the art at i2b2 2010.
J Am Med Inform Assoc. 2011 Sep-Oct;18(5):557-62. doi: 10.1136/amiajnl-2011-000150. Epub 2011 May 12.
6
A study of machine-learning-based approaches to extract clinical entities and their assertions from discharge summaries.
J Am Med Inform Assoc. 2011 Sep-Oct;18(5):601-6. doi: 10.1136/amiajnl-2011-000163. Epub 2011 Apr 20.
7
Tracking medical students' clinical experiences using natural language processing.
J Biomed Inform. 2009 Oct;42(5):781-9. doi: 10.1016/j.jbi.2009.02.004. Epub 2009 Feb 21.
9
Automatic capture of student notes to augment mentor feedback and student performance on patient write-ups.
J Gen Intern Med. 2008 Jul;23(7):979-84. doi: 10.1007/s11606-008-0608-y.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验