Suppr超能文献

机器评分在医学生临床推理写作中的应用:初步有效性证据。

Machine Scoring of Medical Students' Written Clinical Reasoning: Initial Validity Evidence.

机构信息

A.T. Cianciolo is associate professor of medical education, Southern Illinois University School of Medicine, Springfield, Illinois; ORCID: https://orcid.org/0000-0001-5948-9304 .

N. LaVoie is president, Parallel Consulting, Petaluma, California; ORCID: https://orcid.org/0000-0002-7013-3568 .

出版信息

Acad Med. 2021 Jul 1;96(7):1026-1035. doi: 10.1097/ACM.0000000000004010.

Abstract

PURPOSE

Developing medical students' clinical reasoning requires a structured longitudinal curriculum with frequent targeted assessment and feedback. Performance-based assessments, which have the strongest validity evidence, are currently not feasible for this purpose because they are time-intensive to score. This study explored the potential of using machine learning technologies to score one such assessment-the diagnostic justification essay.

METHOD

From May to September 2018, machine scoring algorithms were trained to score a sample of 700 diagnostic justification essays written by 414 third-year medical students from the Southern Illinois University School of Medicine classes of 2012-2017. The algorithms applied semantically based natural language processing metrics (e.g., coherence, readability) to assess essay quality on 4 criteria (differential diagnosis, recognition and use of findings, workup, and thought process); the scores for these criteria were summed to create overall scores. Three sources of validity evidence (response process, internal structure, and association with other variables) were examined.

RESULTS

Machine scores correlated more strongly with faculty ratings than faculty ratings did with each other (machine: .28-.53, faculty: .13-.33) and were less case-specific. Machine scores and faculty ratings were similarly correlated with medical knowledge, clinical cognition, and prior diagnostic justification. Machine scores were more strongly associated with clinical communication than were faculty ratings (.43 vs .31).

CONCLUSIONS

Machine learning technologies may be useful for assessing medical students' long-form written clinical reasoning. Semantically based machine scoring may capture the communicative aspects of clinical reasoning better than faculty ratings, offering the potential for automated assessment that generalizes to the workplace. These results underscore the potential of machine scoring to capture an aspect of clinical reasoning performance that is difficult to assess with traditional analytic scoring methods. Additional research should investigate machine scoring generalizability and examine its acceptability to trainees and educators.

摘要

目的

培养医学生的临床推理能力需要一个结构合理的纵向课程,课程应频繁地进行有针对性的评估和反馈。基于表现的评估具有最强的有效性证据,但目前由于评分耗时,不适合用于此目的。本研究探讨了使用机器学习技术对其中一种评估方法——诊断理由论文进行评分的可能性。

方法

2018 年 5 月至 9 月,我们训练了机器评分算法,以对来自南伊利诺伊大学医学院 2012-2017 届的 414 名三年级医学生所写的 700 篇诊断理由论文进行评分。该算法应用基于语义的自然语言处理指标(如连贯性、可读性),根据 4 个标准(鉴别诊断、发现的识别和使用、检查和思维过程)评估论文质量;这些标准的分数相加得出总分。考察了 3 种有效性证据来源(反应过程、内部结构和与其他变量的关联)。

结果

机器评分与教师评分的相关性强于教师评分之间的相关性(机器:.28-.53,教师:.13-.33),并且不那么具体病例。机器评分和教师评分与医学知识、临床认知和先前的诊断理由具有相似的相关性。与教师评分相比,机器评分与临床沟通的相关性更强(.43 与.31)。

结论

机器学习技术可能有助于评估医学生的长篇书面临床推理能力。基于语义的机器评分可能比教师评分更好地捕捉临床推理的沟通方面,从而提供具有普遍适用性的自动化评估的潜力。这些结果强调了机器评分捕捉传统分析评分方法难以评估的临床推理表现方面的潜力。进一步的研究应调查机器评分的通用性,并研究其对学员和教育者的可接受性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f73a/8243833/706c069a5ec1/nihms-1690625-f0001.jpg

相似文献

7
Teaching Clinical Reasoning in the Preclinical Period.临床推理教学在临床前阶段。
Mil Med. 2024 Aug 30;189(9-10):2177-2183. doi: 10.1093/milmed/usad370.
8
Can Nonclinician Raters Be Trained to Assess Clinical Reasoning in Postencounter Patient Notes?非临床评分者能否经过培训来评估患者就诊后记录中的临床推理?
Acad Med. 2019 Nov;94(11S Association of American Medical Colleges Learn Serve Lead: Proceedings of the 58th Annual Research in Medical Education Sessions):S21-S27. doi: 10.1097/ACM.0000000000002904.

引用本文的文献

本文引用的文献

1
ASPIRE-ing to Excellence at SIUSOM.在南伊利诺伊大学医学院追求卓越。
MedEdPublish (2016). 2017 May 5;6:82. doi: 10.15694/mep.2017.000082. eCollection 2017.
3
Evaluating clerkship competency without exams.不通过考试评估实习医生的能力。
Clin Teach. 2020 Dec;17(6):624-628. doi: 10.1111/tct.13114. Epub 2019 Dec 2.
4
Can Nonclinician Raters Be Trained to Assess Clinical Reasoning in Postencounter Patient Notes?非临床评分者能否经过培训来评估患者就诊后记录中的临床推理?
Acad Med. 2019 Nov;94(11S Association of American Medical Colleges Learn Serve Lead: Proceedings of the 58th Annual Research in Medical Education Sessions):S21-S27. doi: 10.1097/ACM.0000000000002904.
5
Clinical Reasoning as a Core Competency.临床推理作为一项核心能力。
Acad Med. 2020 Aug;95(8):1166-1171. doi: 10.1097/ACM.0000000000003027.
6
An Introduction to Machine Learning for Clinicians.临床医师机器学习入门。
Acad Med. 2019 Oct;94(10):1433-1436. doi: 10.1097/ACM.0000000000002792.
9
What Skills Do Clinical Evaluators Value Most In Oral Case Presentations?临床评估者在口头病例报告中最看重哪些技能?
Teach Learn Med. 2019 Apr-May;31(2):129-135. doi: 10.1080/10401334.2018.1512861. Epub 2018 Dec 14.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验