Suppr超能文献

相似文献

1
Hybrid methods for improving information access in clinical documents: concept, assertion, and relation identification.
J Am Med Inform Assoc. 2011 Sep-Oct;18(5):588-93. doi: 10.1136/amiajnl-2011-000154. Epub 2011 May 19.
2
A study of machine-learning-based approaches to extract clinical entities and their assertions from discharge summaries.
J Am Med Inform Assoc. 2011 Sep-Oct;18(5):601-6. doi: 10.1136/amiajnl-2011-000163. Epub 2011 Apr 20.
3
A flexible framework for deriving assertions from electronic medical records.
J Am Med Inform Assoc. 2011 Sep-Oct;18(5):568-73. doi: 10.1136/amiajnl-2011-000152. Epub 2011 Jul 1.
4
2010 i2b2/VA challenge on concepts, assertions, and relations in clinical text.
J Am Med Inform Assoc. 2011 Sep-Oct;18(5):552-6. doi: 10.1136/amiajnl-2011-000203. Epub 2011 Jun 16.
5
Enhancing clinical concept extraction with distributional semantics.
J Biomed Inform. 2012 Feb;45(1):129-40. doi: 10.1016/j.jbi.2011.10.007. Epub 2011 Nov 7.
6
A knowledge discovery and reuse pipeline for information extraction in clinical notes.
J Am Med Inform Assoc. 2011 Sep-Oct;18(5):574-9. doi: 10.1136/amiajnl-2011-000302. Epub 2011 Jul 7.
7
MITRE system for clinical assertion status classification.
J Am Med Inform Assoc. 2011 Sep-Oct;18(5):563-7. doi: 10.1136/amiajnl-2011-000164. Epub 2011 Apr 22.
8
Using machine learning for concept extraction on clinical documents from multiple data sources.
J Am Med Inform Assoc. 2011 Sep-Oct;18(5):580-7. doi: 10.1136/amiajnl-2011-000155. Epub 2011 Jun 27.
9
Automatic extraction of relations between medical concepts in clinical texts.
J Am Med Inform Assoc. 2011 Sep-Oct;18(5):594-600. doi: 10.1136/amiajnl-2011-000153.
10
Development and evaluation of RapTAT: a machine learning system for concept mapping of phrases from medical narratives.
J Biomed Inform. 2014 Apr;48:54-65. doi: 10.1016/j.jbi.2013.11.008. Epub 2013 Dec 4.

引用本文的文献

1
Chinese Clinical Named Entity Recognition with ALBERT and MHA Mechanism.
Evid Based Complement Alternat Med. 2022 May 23;2022:2056039. doi: 10.1155/2022/2056039. eCollection 2022.
2
DI++: A deep learning system for patient condition identification in clinical notes.
Artif Intell Med. 2022 Jan;123:102224. doi: 10.1016/j.artmed.2021.102224. Epub 2021 Dec 2.
3
Clinical Concept Extraction with Lexical Semantics to Support Automatic Annotation.
Int J Environ Res Public Health. 2021 Oct 9;18(20):10564. doi: 10.3390/ijerph182010564.
5
Differentiating Sense through Semantic Interaction Data.
AMIA Annu Symp Proc. 2017 Feb 10;2016:1238-1247. eCollection 2016.
8
Learning to identify treatment relations in clinical text.
AMIA Annu Symp Proc. 2014 Nov 14;2014:282-8. eCollection 2014.
9
Assessing the role of a medication-indication resource in the treatment relation extraction from clinical text.
J Am Med Inform Assoc. 2015 Apr;22(e1):e162-76. doi: 10.1136/amiajnl-2014-002954. Epub 2014 Oct 21.
10
"Big data" and the electronic health record.
Yearb Med Inform. 2014 Aug 15;9(1):97-104. doi: 10.15265/IY-2014-0003.

本文引用的文献

2
An overview of MetaMap: historical perspective and recent advances.
J Am Med Inform Assoc. 2010 May-Jun;17(3):229-36. doi: 10.1136/jamia.2009.002733.
3
Rule-based information extraction from patients' clinical data.
J Biomed Inform. 2009 Oct;42(5):923-36. doi: 10.1016/j.jbi.2009.07.007. Epub 2009 Jul 29.
4
Machine learning and rule-based approaches to assertion classification.
J Am Med Inform Assoc. 2009 Jan-Feb;16(1):109-15. doi: 10.1197/jamia.M2950. Epub 2008 Oct 24.
6
Lessons extracting diseases from discharge summaries.
AMIA Annu Symp Proc. 2007 Oct 11;2007:478-82.
9
Identifying important concepts from medical documents.
J Biomed Inform. 2006 Dec;39(6):668-79. doi: 10.1016/j.jbi.2006.02.001. Epub 2006 Mar 2.
10
Automated encoding of clinical documents based on natural language processing.
J Am Med Inform Assoc. 2004 Sep-Oct;11(5):392-402. doi: 10.1197/jamia.M1552. Epub 2004 Jun 7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验