Suppr超能文献

从社区生成的文本中挖掘消费者健康词汇。

Mining consumer health vocabulary from community-generated text.

作者信息

Vydiswaran V G Vinod, Mei Qiaozhu, Hanauer David A, Zheng Kai

机构信息

School of Information, University of Michigan, Ann Arbor, MI.

School of Information, University of Michigan, Ann Arbor, MI ; Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, MI.

出版信息

AMIA Annu Symp Proc. 2014 Nov 14;2014:1150-9. eCollection 2014.

Abstract

Community-generated text corpora can be a valuable resource to extract consumer health vocabulary (CHV) and link them to professional terminologies and alternative variants. In this research, we propose a pattern-based text-mining approach to identify pairs of CHV and professional terms from Wikipedia, a large text corpus created and maintained by the community. A novel measure, leveraging the ratio of frequency of occurrence, was used to differentiate consumer terms from professional terms. We empirically evaluated the applicability of this approach using a large data sample consisting of MedLine abstracts and all posts from an online health forum, MedHelp. The results show that the proposed approach is able to identify synonymous pairs and label the terms as either consumer or professional term with high accuracy. We conclude that the proposed approach provides great potential to produce a high quality CHV to improve the performance of computational applications in processing consumer-generated health text.

摘要

社区生成的文本语料库可以成为提取消费者健康词汇(CHV)并将它们与专业术语及替代变体相联系的宝贵资源。在本研究中,我们提出一种基于模式的文本挖掘方法,以从维基百科(一个由社区创建和维护的大型文本语料库)中识别CHV与专业术语对。一种利用出现频率比率的新颖度量方法被用于区分消费者术语和专业术语。我们使用一个由医学在线数据库摘要和一个在线健康论坛MedHelp的所有帖子组成的大样本数据,对该方法的适用性进行了实证评估。结果表明,所提出的方法能够识别同义词对,并以高精度将术语标记为消费者术语或专业术语。我们得出结论,所提出的方法具有生成高质量CHV的巨大潜力,可提高计算应用在处理消费者生成的健康文本方面的性能。

相似文献

1
Mining consumer health vocabulary from community-generated text.
AMIA Annu Symp Proc. 2014 Nov 14;2014:1150-9. eCollection 2014.
2
Enriching consumer health vocabulary through mining a social Q&A site: A similarity-based approach.
J Biomed Inform. 2017 May;69:75-85. doi: 10.1016/j.jbi.2017.03.016. Epub 2017 Mar 27.
3
Computer-assisted update of a consumer health vocabulary through mining of social network data.
J Med Internet Res. 2011 May 17;13(2):e37. doi: 10.2196/jmir.1636.
4
Consumer health concepts that do not map to the UMLS: where do they fit?
J Am Med Inform Assoc. 2008 Jul-Aug;15(4):496-505. doi: 10.1197/jamia.M2599. Epub 2008 Apr 24.
6
Mining and standardizing chinese consumer health terms.
BMC Med Inform Decis Mak. 2018 Dec 7;18(Suppl 5):120. doi: 10.1186/s12911-018-0695-6.
8
An automated method to enrich consumer health vocabularies using GloVe word embeddings and an auxiliary lexical resource.
PeerJ Comput Sci. 2021 Aug 9;7:e668. doi: 10.7717/peerj-cs.668. eCollection 2021.
10
Reconciliation of patient/doctor vocabulary in a structured resource.
Health Informatics J. 2019 Dec;25(4):1219-1231. doi: 10.1177/1460458217751014. Epub 2018 Jan 13.

引用本文的文献

3
Situating Wikipedia as a health information resource in various contexts: A scoping review.
PLoS One. 2020 Feb 18;15(2):e0228786. doi: 10.1371/journal.pone.0228786. eCollection 2020.
4
Hybrid bag of approaches to characterize selection criteria for cohort identification.
J Am Med Inform Assoc. 2019 Nov 1;26(11):1172-1180. doi: 10.1093/jamia/ocz079.
6
Mining and standardizing chinese consumer health terms.
BMC Med Inform Decis Mak. 2018 Dec 7;18(Suppl 5):120. doi: 10.1186/s12911-018-0695-6.
7
When synonyms are not enough: Optimal parenthetical insertion for text simplification.
AMIA Annu Symp Proc. 2018 Apr 16;2017:810-819. eCollection 2017.
9
Enriching consumer health vocabulary through mining a social Q&A site: A similarity-based approach.
J Biomed Inform. 2017 May;69:75-85. doi: 10.1016/j.jbi.2017.03.016. Epub 2017 Mar 27.

本文引用的文献

1
Towards Large-scale Twitter Mining for Drug-related Adverse Events.
SHB12 (2012). 2012 Oct 29;2012:25-32. doi: 10.1145/2389707.2389713.
3
Cochrane and Wikipedia: the collaborative potential for a quantum leap in the dissemination and uptake of trusted evidence.
Cochrane Database Syst Rev. 2013 Oct 22;2013(10):ED000069. doi: 10.1002/14651858.ED000069.
4
5
Evaluating the effectiveness of a wiki internet site for medical topics.
J Hand Microsurg. 2012 Jun;4(1):21-4. doi: 10.1007/s12593-012-0064-0. Epub 2012 Mar 10.
6
Identifying medical terms in patient-authored text: a crowdsourcing-based approach.
J Am Med Inform Assoc. 2013 Nov-Dec;20(6):1120-7. doi: 10.1136/amiajnl-2012-001110. Epub 2013 May 5.
7
An evaluation of Wikipedia as a resource for patient education in nephrology.
Semin Dial. 2013 Mar-Apr;26(2):159-63. doi: 10.1111/sdi.12059. Epub 2013 Feb 22.
8
Should doctors spurn Wikipedia?
J R Soc Med. 2011 Dec;104(12):488-9. doi: 10.1258/jrsm.2011.110227.
9
Information-seeking behaviors of first-semester veterinary students: a preliminary report.
J Vet Med Educ. 2011 Spring;38(1):21-32. doi: 10.3138/jvme.38.1.21.
10
Computer-assisted update of a consumer health vocabulary through mining of social network data.
J Med Internet Res. 2011 May 17;13(2):e37. doi: 10.2196/jmir.1636.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验