Suppr超能文献

在明确的双层膜中对京都啡肽进行恒pH分子动力学研究。

Constant-pH Molecular Dynamics Study of Kyotorphin in an Explicit Bilayer.

作者信息

Magalhães Pedro R, Machuqueiro Miguel, Baptista António M

机构信息

Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Oeiras, Portugal.

Centro de Química e Bioquímica and Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal.

出版信息

Biophys J. 2015 May 5;108(9):2282-90. doi: 10.1016/j.bpj.2015.03.052.

Abstract

To our knowledge, we present the first constant-pH molecular dynamics study of the neuropeptide kyotorphin in the presence of an explicit lipid bilayer. The overall conformation freedom of the peptide was found to be affected by the interaction with the membrane, in accordance with previous results using different methodologies. Analysis of the interactions between the N-terminus amine group of the peptide and several lipid atoms shows that the membrane is able to stabilize both ionized and neutral forms of kyotorphin, resulting in a pKa value that is similar to the one obtained in water. This illustrates how a detailed molecular model of the membrane leads to rather different results than would be expected from simply regarding it as a low-dielectric slab.

摘要

据我们所知,我们首次在存在明确脂质双层的情况下对神经肽京都啡肽进行了恒pH分子动力学研究。与使用不同方法的先前结果一致,发现该肽的整体构象自由度受与膜相互作用的影响。对该肽N端胺基与几个脂质原子之间相互作用的分析表明,膜能够稳定京都啡肽的离子化形式和中性形式,从而产生与在水中获得的pKa值相似的pKa值。这说明了膜的详细分子模型如何导致与简单地将其视为低介电平板所预期的结果截然不同的结果。

相似文献

1
Constant-pH Molecular Dynamics Study of Kyotorphin in an Explicit Bilayer.
Biophys J. 2015 May 5;108(9):2282-90. doi: 10.1016/j.bpj.2015.03.052.
2
Membrane-induced conformational changes of kyotorphin revealed by molecular dynamics simulations.
J Phys Chem B. 2010 Sep 9;114(35):11659-67. doi: 10.1021/jp104418g.
5
The pH-dependent conformational states of kyotorphin: a constant-pH molecular dynamics study.
Biophys J. 2007 Mar 15;92(6):1836-45. doi: 10.1529/biophysj.106.092445. Epub 2006 Dec 15.
6
Molecular dynamics simulation of melittin in a dimyristoylphosphatidylcholine bilayer membrane.
Biophys J. 1998 Oct;75(4):1603-18. doi: 10.1016/S0006-3495(98)77604-0.
7
The anti-inflammatory action of the analgesic kyotorphin neuropeptide derivatives: insights of a lipid-mediated mechanism.
Amino Acids. 2016 Jan;48(1):307-18. doi: 10.1007/s00726-015-2088-9. Epub 2015 Sep 7.
8
Calculation of apparent pK values of saturated fatty acids with different lengths in DOPC phospholipid bilayers.
Phys Chem Chem Phys. 2019 May 15;21(19):10052-10060. doi: 10.1039/c9cp01204d.
9
Interaction of an amphiphilic peptide with a phospholipid bilayer surface by molecular dynamics simulation study.
J Biomol Struct Dyn. 1995 Apr;12(5):937-56. doi: 10.1080/07391102.1995.10508789.
10
Membrane interactions in small fast-tumbling bicelles as studied by 31P NMR.
Biochim Biophys Acta. 2015 Mar;1848(3):760-6. doi: 10.1016/j.bbamem.2014.12.001. Epub 2014 Dec 9.

引用本文的文献

1
Increasing the Realism of pHLIP Peptide Models with a Novel pH Gradient CpHMD Method.
J Chem Theory Comput. 2022 Nov 8;18(11):6472-6481. doi: 10.1021/acs.jctc.2c00880. Epub 2022 Oct 18.
2
Extending the Stochastic Titration CpHMD to CHARMM36m.
J Phys Chem B. 2022 Oct 13;126(40):7870-7882. doi: 10.1021/acs.jpcb.2c04529. Epub 2022 Oct 3.
3
Optimization of an Protocol Using Probe Permeabilities to Identify Membrane Pan-Assay Interference Compounds.
J Chem Inf Model. 2022 Jun 27;62(12):3034-3042. doi: 10.1021/acs.jcim.2c00372. Epub 2022 Jun 13.
4
Effect of monovalent salt concentration and peptide secondary structure in peptide-micelle binding.
RSC Adv. 2021 Nov 17;11(58):36836-36849. doi: 10.1039/d1ra06772a. eCollection 2021 Nov 10.
5
Novel US-CpHMD Protocol to Study the Protonation-Dependent Mechanism of the ATP/ADP Carrier.
J Chem Inf Model. 2022 May 23;62(10):2550-2560. doi: 10.1021/acs.jcim.2c00233. Epub 2022 Apr 20.
6
Role of Counterions in Constant-pH Molecular Dynamics Simulations of PAMAM Dendrimers.
ACS Omega. 2018 Feb 28;3(2):2001-2009. doi: 10.1021/acsomega.7b01708. Epub 2018 Feb 19.
7
Membrane-Induced p K Shifts in wt-pHLIP and Its L16H Variant.
J Chem Theory Comput. 2018 Jun 12;14(6):3289-3297. doi: 10.1021/acs.jctc.8b00102. Epub 2018 May 17.

本文引用的文献

2
Continuous Constant pH Molecular Dynamics in Explicit Solvent with pH-Based Replica Exchange.
J Chem Theory Comput. 2011 Aug 9;7(8):2617-29. doi: 10.1021/ct200146j. Epub 2011 Jul 1.
3
Treatment of Ionic Strength in Biomolecular Simulations of Charged Lipid Bilayers.
J Chem Theory Comput. 2014 Dec 9;10(12):5483-92. doi: 10.1021/ct500680q. Epub 2014 Nov 13.
4
Protonation of DMPC in a Bilayer Environment Using a Linear Response Approximation.
J Chem Theory Comput. 2014 May 13;10(5):2176-84. doi: 10.1021/ct5000082.
5
Why a diaminopyrrolic tripodal receptor binds mannosides in acetonitrile but not in water?
Beilstein J Org Chem. 2014 Jul 3;10:1513-23. doi: 10.3762/bjoc.10.156. eCollection 2014.
7
8
Structural effects of pH and deacylation on surfactant protein C in an organic solvent mixture: a constant-pH MD study.
J Chem Inf Model. 2013 Nov 25;53(11):2979-89. doi: 10.1021/ci400479c. Epub 2013 Oct 24.
9
Conformational study of GSH and GSSG using constant-pH molecular dynamics simulations.
J Phys Chem B. 2013 Jun 27;117(25):7507-17. doi: 10.1021/jp401066v. Epub 2013 Jun 12.
10
Charge parametrization of the DvH-c3 heme group: validation using constant-(pH,E) molecular dynamics simulations.
J Phys Chem B. 2013 Jan 10;117(1):70-82. doi: 10.1021/jp3082134. Epub 2012 Dec 19.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验