Suppr超能文献

为什么一个二氨基吡咯三唑受体在乙腈中而不是在水中结合甘露糖苷?

Why a diaminopyrrolic tripodal receptor binds mannosides in acetonitrile but not in water?

机构信息

Centro de Química e Bioquímica, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal.

Dipartimento di Chimica, Università di Firenze, Polo Scientifico e Tecnológico, 50019 Sesto Fiorentino, Firenze, Italy.

出版信息

Beilstein J Org Chem. 2014 Jul 3;10:1513-23. doi: 10.3762/bjoc.10.156. eCollection 2014.

Abstract

Intermolecular interactions involving carbohydrates and their natural receptors play important roles in several biological processes. The development of synthetic receptors is very useful to study these recognition processes. Recently, it was synthetized a diaminopyrrolic tripodal receptor that is selective for mannosides, which are obtained from mannose, a sugar with significant relevance in living systems. However, this receptor is significantly more active in acetonitrile than in water. In this work, we performed several molecular dynamics and constant-pH molecular dynamics simulations in acetonitrile and water to evaluate the conformational space of the receptor and to understand the molecular detail of the receptor-mannoside interaction. The protonation states sampled by the receptor show that the positive charges are always as distant as possible in order to avoid large intramolecular repulsions. Moreover, the conformational space of the receptor is very similar in water above pH 4.0 and in acetonitrile. From the simulations with the mannoside, we observe that the interactions are more specific in acetonitrile (mainly hydrogen bonds) than in water (mainly hydrophobic). Our results suggest that the readiness of the receptor to bind mannoside is not significantly affected in water (above pH 4.0). Probably, the hydrogen bond network that is formed in acetonitrile (which is weaker in water) is the main reason for the higher activity in this solvent. This work also presents a new implementation of the stochastic titration constant-pH molecular dynamics method to a synthetic receptor of sugars and attests its ability to describe the protonation/conformation coupling in these molecules.

摘要

糖及其天然受体之间的分子相互作用在许多生物过程中起着重要作用。合成受体的发展对于研究这些识别过程非常有用。最近,合成了一种对甘露糖苷具有选择性的二氨基吡咯三齿受体,甘露糖苷是一种在生命系统中具有重要意义的糖。然而,与在水中相比,该受体在乙腈中的活性要高得多。在这项工作中,我们在乙腈和水中进行了多次分子动力学和恒 pH 分子动力学模拟,以评估受体的构象空间,并深入了解受体-甘露糖苷相互作用的分子细节。受体所采样的质子化状态表明,为了避免大的分子内排斥,正电荷总是尽可能远。此外,在 pH 值高于 4.0 的水和乙腈中,受体的构象空间非常相似。通过与甘露糖苷的模拟,我们观察到在乙腈中(主要是氢键)的相互作用比在水中(主要是疏水作用)更具特异性。我们的结果表明,在水中(pH 值高于 4.0),受体与甘露糖苷结合的能力不受显著影响。可能在乙腈中形成的氢键网络(在水中较弱)是该溶剂中活性更高的主要原因。这项工作还提出了一种新的随机滴定恒 pH 分子动力学方法在糖的合成受体上的实现,并证明了其描述这些分子中质子化/构象偶联的能力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fe7e/4142876/c112520af19c/Beilstein_J_Org_Chem-10-1513-g002.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验