Syzranov S V, Radzihovsky L, Gurarie V
Physics Department, University of Colorado, Boulder, Colorado 80309, USA.
Phys Rev Lett. 2015 Apr 24;114(16):166601. doi: 10.1103/PhysRevLett.114.166601. Epub 2015 Apr 20.
Motivated by Weyl semimetals and weakly doped semiconductors, we study transport in a weakly disordered semiconductor with a power-law quasiparticle dispersion ξ_{k}∝k^{α}. We show, that in 2α dimensions short-correlated disorder experiences logarithmic renormalization from all energies in the band. We study the case of a general dimension d using a renormalization group, controlled by an ϵ=2α-d expansion. Above the critical dimensions, conduction exhibits a localization-delocalization phase transition or a sharp crossover (depending on the symmetries of the Hamiltonian) as a function of disorder strength. We utilize this analysis to compute the low-temperature conductivity in Weyl semimetals and weakly doped semiconductors near and below the critical disorder point.
受外尔半金属和弱掺杂半导体的启发,我们研究了具有幂律准粒子色散ξ_{k}∝k^{α}的弱无序半导体中的输运。我们表明,在2α维中,短程关联无序在能带的所有能量下都经历对数重整化。我们使用重整化群研究一般维度d的情况,该重整化群由ϵ=2α - d展开控制。在临界维度以上,作为无序强度的函数,传导表现出局域化 - 非局域化相变或急剧交叉(取决于哈密顿量的对称性)。我们利用这一分析来计算外尔半金属和临界无序点附近及以下的弱掺杂半导体中的低温电导率。