Liu Yuan, Dawant Benoit M
IEEE J Biomed Health Inform. 2015 Jul;19(4):1362-74. doi: 10.1109/JBHI.2015.2428672. Epub 2015 Apr 30.
Localizing the anterior and posterior commissures (AC/PC) and the midsagittal plane (MSP) is crucial in stereotactic and functional neurosurgery, human brain mapping, and medical image processing. We present a learning-based method for automatic and efficient localization of these landmarks and the plane using regression forests. Given a point in an image, we first extract a set of multiscale long-range contextual features. We then build random forests models to learn a nonlinear relationship between these features and the probability of the point being a landmark or in the plane. Three-stage coarse-to-fine models are trained for the AC, PC, and MSP separately using downsampled by 4, downsampled by 2, and the original images. Localization is performed hierarchically, starting with a rough estimation that is progressively refined. We evaluate our method using a leave-one-out approach with 100 clinical T1-weighted images and compare it to state-of-the-art methods including an atlas-based approach with six nonrigid registration algorithms and a model-based approach for the AC and PC, and a global symmetry-based approach for the MSP. Our method results in an overall error of 0.55 ±0.30 mm for AC, 0.56 ±0.28 mm for PC, 1.08(°) ±0.66 in the plane's normal direction, and 1.22 ±0.73 voxels in average distance for MSP; it performs significantly better than four registration algorithms and the model-based method for AC and PC, and the global symmetry-based method for MSP. We also evaluate the sensitivity of our method to image quality and parameter values. We show that it is robust to asymmetry, noise, and rotation. Computation time is 25 s.
在前瞻性和功能性神经外科手术、人类脑图谱绘制以及医学图像处理中,定位前连合和后连合(AC/PC)以及正中矢状面(MSP)至关重要。我们提出了一种基于学习的方法,使用回归森林自动高效地定位这些标志点和平面。给定图像中的一个点,我们首先提取一组多尺度远距离上下文特征。然后,我们构建随机森林模型,以学习这些特征与该点成为标志点或位于平面内的概率之间的非线性关系。分别使用下采样4倍、下采样2倍的图像以及原始图像,针对AC、PC和MSP训练三阶段从粗到精的模型。定位是分层进行的,从粗略估计开始,逐步细化。我们使用留一法对100张临床T1加权图像评估我们的方法,并将其与包括基于图谱的方法(六种非刚性配准算法)、基于模型的AC和PC方法以及基于全局对称性的MSP方法在内的现有方法进行比较。我们的方法在AC上的总体误差为0.55±0.30毫米,PC为0.56±0.28毫米,平面法线方向为1.08(°)±0.66,MSP平均距离为1.22±0.73体素;它在AC和PC方面的表现明显优于四种配准算法和基于模型的方法,在MSP方面优于基于全局对称性的方法。我们还评估了我们的方法对图像质量和参数值的敏感性。我们表明它对不对称、噪声和旋转具有鲁棒性。计算时间为25秒。