Suppr超能文献

使用回归森林在MRI扫描中自动定位前连合、后连合和正中矢状面。

Automatic localization of the anterior commissure, posterior commissure, and midsagittal plane in MRI scans using regression forests.

作者信息

Liu Yuan, Dawant Benoit M

出版信息

IEEE J Biomed Health Inform. 2015 Jul;19(4):1362-74. doi: 10.1109/JBHI.2015.2428672. Epub 2015 Apr 30.

Abstract

Localizing the anterior and posterior commissures (AC/PC) and the midsagittal plane (MSP) is crucial in stereotactic and functional neurosurgery, human brain mapping, and medical image processing. We present a learning-based method for automatic and efficient localization of these landmarks and the plane using regression forests. Given a point in an image, we first extract a set of multiscale long-range contextual features. We then build random forests models to learn a nonlinear relationship between these features and the probability of the point being a landmark or in the plane. Three-stage coarse-to-fine models are trained for the AC, PC, and MSP separately using downsampled by 4, downsampled by 2, and the original images. Localization is performed hierarchically, starting with a rough estimation that is progressively refined. We evaluate our method using a leave-one-out approach with 100 clinical T1-weighted images and compare it to state-of-the-art methods including an atlas-based approach with six nonrigid registration algorithms and a model-based approach for the AC and PC, and a global symmetry-based approach for the MSP. Our method results in an overall error of 0.55 ±0.30 mm for AC, 0.56 ±0.28 mm for PC, 1.08(°) ±0.66 in the plane's normal direction, and 1.22 ±0.73 voxels in average distance for MSP; it performs significantly better than four registration algorithms and the model-based method for AC and PC, and the global symmetry-based method for MSP. We also evaluate the sensitivity of our method to image quality and parameter values. We show that it is robust to asymmetry, noise, and rotation. Computation time is 25 s.

摘要

在前瞻性和功能性神经外科手术、人类脑图谱绘制以及医学图像处理中,定位前连合和后连合(AC/PC)以及正中矢状面(MSP)至关重要。我们提出了一种基于学习的方法,使用回归森林自动高效地定位这些标志点和平面。给定图像中的一个点,我们首先提取一组多尺度远距离上下文特征。然后,我们构建随机森林模型,以学习这些特征与该点成为标志点或位于平面内的概率之间的非线性关系。分别使用下采样4倍、下采样2倍的图像以及原始图像,针对AC、PC和MSP训练三阶段从粗到精的模型。定位是分层进行的,从粗略估计开始,逐步细化。我们使用留一法对100张临床T1加权图像评估我们的方法,并将其与包括基于图谱的方法(六种非刚性配准算法)、基于模型的AC和PC方法以及基于全局对称性的MSP方法在内的现有方法进行比较。我们的方法在AC上的总体误差为0.55±0.30毫米,PC为0.56±0.28毫米,平面法线方向为1.08(°)±0.66,MSP平均距离为1.22±0.73体素;它在AC和PC方面的表现明显优于四种配准算法和基于模型的方法,在MSP方面优于基于全局对称性的方法。我们还评估了我们的方法对图像质量和参数值的敏感性。我们表明它对不对称、噪声和旋转具有鲁棒性。计算时间为25秒。

相似文献

4
Fast Talairach Transformation for magnetic resonance neuroimages.磁共振神经影像的快速Talairach变换
J Comput Assist Tomogr. 2006 Jul-Aug;30(4):629-41. doi: 10.1097/00004728-200607000-00013.
8
Automated interhemispheric surface extraction in T1-weighted MRI using intensity and symmetry information.
J Neurosci Methods. 2014 Jan 30;222:97-105. doi: 10.1016/j.jneumeth.2013.11.007. Epub 2013 Nov 15.

引用本文的文献

2
4
DeepNavNet: Automated Landmark Localization for Neuronavigation.深度导航网络:用于神经导航的自动地标定位
Front Neurosci. 2021 Jun 17;15:670287. doi: 10.3389/fnins.2021.670287. eCollection 2021.
10
Probabilistic liver atlas construction.概率性肝脏图谱构建
Biomed Eng Online. 2017 Jan 13;16(1):15. doi: 10.1186/s12938-016-0305-8.

本文引用的文献

2
Midsagittal plane extraction from brain images based on 3D SIFT.基于3D尺度不变特征变换的脑图像矢状面提取
Phys Med Biol. 2014 Mar 21;59(6):1367-87. doi: 10.1088/0031-9155/59/6/1367. Epub 2014 Feb 28.
6
8
Fast free-form deformation using graphics processing units.基于图形处理单元的快速自由变形。
Comput Methods Programs Biomed. 2010 Jun;98(3):278-84. doi: 10.1016/j.cmpb.2009.09.002. Epub 2009 Oct 8.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验