Institute of Psychiatry, King's College London, London, UK.
Division of Brain Sciences, Imperial College London, London, UK.
Neurosci Biobehav Rev. 2015 Aug;55:211-22. doi: 10.1016/j.neubiorev.2015.04.014. Epub 2015 May 5.
A variety of anatomical and physiological evidence suggests that the brain performs computations using motifs that are repeated across species, brain areas, and modalities. The computational architecture of cortex, for example, is very similar from one area to another and the types, arrangements, and connections of cortical neurons are highly stereotyped. This supports the idea that each cortical area conducts calculations using similarly structured neuronal modules: what we term canonical computational motifs. In addition, the remarkable self-similarity of the brain observables at the micro-, meso- and macro-scale further suggests that these motifs are repeated at increasing spatial and temporal scales supporting brain activity from primary motor and sensory processing to higher-level behaviour and cognition. Here, we briefly review the biological bases of canonical brain circuits and the role of inhibitory interneurons in these computational elements. We then elucidate how canonical computational motifs can be repeated across spatial and temporal scales to build a multiplexing information system able to encode and transmit information of increasing complexity. We point to the similarities between the patterns of activation observed in primary sensory cortices by use of electrophysiology and those observed in large scale networks measured with fMRI. We then employ the canonical model of brain function to unify seemingly disparate evidence on the pathophysiology of schizophrenia in a single explanatory framework. We hypothesise that such a framework may also be extended to cover multiple brain disorders which are grounded in dysfunction of GABA interneurons and/or these computational motifs.
各种解剖学和生理学证据表明,大脑使用在物种、脑区和模态中重复出现的模式来进行计算。例如,皮质的计算架构在一个区域到另一个区域非常相似,皮质神经元的类型、排列和连接高度定型。这支持了这样一种观点,即每个皮质区域都使用类似结构的神经元模块进行计算:我们称之为典型的计算模式。此外,大脑在微观、中观和宏观尺度上的可观察到的惊人的自相似性进一步表明,这些模式在空间和时间尺度上不断重复,从而支持从初级运动和感觉处理到高级行为和认知的大脑活动。在这里,我们简要回顾了典型脑回路的生物学基础以及抑制性中间神经元在这些计算元件中的作用。然后,我们阐明了典型计算模式如何在空间和时间尺度上重复,以构建一个能够编码和传输越来越复杂信息的复用信息系统。我们指出了使用电生理学观察到的初级感觉皮层中激活模式与使用 fMRI 测量的大尺度网络中观察到的模式之间的相似性。然后,我们利用大脑功能的典型模型,将精神分裂症病理生理学的看似不同的证据统一在一个单一的解释框架中。我们假设,这样的框架也可以扩展到涵盖多种以 GABA 中间神经元和/或这些计算模式功能障碍为基础的大脑疾病。