Saylor Rachel A, Reid Erin A, Lunte Susan M
Department of Chemistry, University of Kansas, Lawrence, KS, USA.
Ralph N. Adams Institute for Bioanalytical Chemistry, University of Kansas, Lawrence, KS, USA.
Electrophoresis. 2015 Aug;36(16):1912-9. doi: 10.1002/elps.201500150. Epub 2015 Jun 29.
A method for the separation and detection of analytes in the dopamine metabolic pathway was developed using microchip electrophoresis with electrochemical detection. The microchip consisted of a 5 cm PDMS separation channel in a simple-t configuration. Analytes in the dopamine metabolic pathway were separated using a background electrolyte composed of 15 mM phosphate at pH 7.4, 15 mM SDS, and 2.5 mM boric acid. Two different microchip substrates using different electrode materials were compared for the analysis: a PDMS/PDMS device with a carbon fiber electrode and a PDMS/glass hybrid device with a pyrolyzed photoresist film carbon electrode. While the PDMS/PDMS device generated high separation efficiencies and good resolution, more reproducible migration times were obtained with the PDMS/glass hybrid device, making it a better choice for biological applications. Lastly, the optimized method was used to monitor l-DOPA metabolism in a rat brain slice.
开发了一种使用带有电化学检测的微芯片电泳法来分离和检测多巴胺代谢途径中的分析物的方法。该微芯片由一个呈简单 - t 构型的5厘米聚二甲基硅氧烷(PDMS)分离通道组成。使用由pH 7.4的15 mM磷酸盐、15 mM十二烷基硫酸钠(SDS)和2.5 mM硼酸组成的背景电解质来分离多巴胺代谢途径中的分析物。比较了使用不同电极材料的两种不同微芯片基底用于分析:一种带有碳纤维电极的PDMS/PDMS装置和一种带有热解光刻胶膜碳电极的PDMS/玻璃混合装置。虽然PDMS/PDMS装置产生了高分离效率和良好的分辨率,但使用PDMS/玻璃混合装置获得了更可重复的迁移时间,使其成为生物应用的更好选择。最后,使用优化后的方法监测大鼠脑片中左旋多巴(l - DOPA)的代谢。