Garnham Christopher P, Vemu Annapurna, Wilson-Kubalek Elizabeth M, Yu Ian, Szyk Agnieszka, Lander Gabriel C, Milligan Ronald A, Roll-Mecak Antonina
Cell Biology and Biophysics Unit, Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, Bethesda, MD 20892, USA.
Scripps Research Institute, La Jolla, CA 92037, USA.
Cell. 2015 May 21;161(5):1112-1123. doi: 10.1016/j.cell.2015.04.003. Epub 2015 May 7.
Glutamylation, the most prevalent tubulin posttranslational modification, marks stable microtubules and regulates recruitment and activity of microtubule- interacting proteins. Nine enzymes of the tubulin tyrosine ligase-like (TTLL) family catalyze glutamylation. TTLL7, the most abundant neuronal glutamylase, adds glutamates preferentially to the β-tubulin tail. Coupled with ensemble and single-molecule biochemistry, our hybrid X-ray and cryo-electron microscopy structure of TTLL7 bound to the microtubule delineates a tripartite microtubule recognition strategy. The enzyme uses its core to engage the disordered anionic tails of α- and β-tubulin, and a flexible cationic domain to bind the microtubule and position itself for β-tail modification. Furthermore, we demonstrate that all single-chain TTLLs with known glutamylase activity utilize a cationic microtubule-binding domain analogous to that of TTLL7. Therefore, our work reveals the combined use of folded and intrinsically disordered substrate recognition elements as the molecular basis for specificity among the enzymes primarily responsible for chemically diversifying cellular microtubules.
谷氨酰胺化是最普遍的微管蛋白翻译后修饰,标记稳定的微管并调节微管相互作用蛋白的募集和活性。微管蛋白酪氨酸连接酶样(TTLL)家族的九种酶催化谷氨酰胺化。TTLL7是最丰富的神经元谷氨酰胺酶,优先将谷氨酸添加到β-微管蛋白尾部。结合整体和单分子生物化学,我们获得的TTLL7与微管结合的X射线和冷冻电子显微镜混合结构描绘了一种三方微管识别策略。该酶利用其核心与α-和β-微管蛋白的无序阴离子尾部结合,并利用一个灵活的阳离子结构域与微管结合并定位自身以进行β-尾部修饰。此外,我们证明所有具有已知谷氨酰胺酶活性的单链TTLL都利用类似于TTLL7的阳离子微管结合结构域。因此,我们的工作揭示了折叠和内在无序的底物识别元件的联合使用,这是主要负责细胞微管化学多样化的酶之间特异性的分子基础。