Cell Biology and Biophysics Unit, Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA.
Department of Integrative Structural and Computational Biology, The Scripps Research Institute La Jolla, La Jolla, CA, USA.
Nat Chem Biol. 2024 Nov;20(11):1493-1504. doi: 10.1038/s41589-024-01599-0. Epub 2024 Apr 24.
Microtubules have spatiotemporally complex posttranslational modification patterns. Tubulin tyrosine ligase-like (TTLL) enzymes introduce the most prevalent modifications on α-tubulin and β-tubulin. How TTLLs specialize for specific substrate recognition and ultimately modification-pattern generation is largely unknown. TTLL6, a glutamylase implicated in ciliopathies, preferentially modifies tubulin α-tails in microtubules. Cryo-electron microscopy, kinetic analysis and single-molecule biochemistry reveal an unprecedented quadrivalent recognition that ensures simultaneous readout of microtubule geometry and posttranslational modification status. By binding to a β-tubulin subunit, TTLL6 modifies the α-tail of the longitudinally adjacent tubulin dimer. Spanning two tubulin dimers along and across protofilaments (PFs) ensures fidelity of recognition of both the α-tail and the microtubule. Moreover, TTLL6 reads out and is stimulated by glutamylation of the β-tail of the laterally adjacent tubulin dimer, mediating crosstalk between α-tail and β-tail. This positive feedback loop can generate localized microtubule glutamylation patterns. Our work uncovers general principles that generate tubulin chemical and topographic complexity.
微管具有时空复杂的翻译后修饰模式。微管酪氨酸连接酶样(TTLL)酶在α-微管蛋白和β-微管蛋白上引入最常见的修饰。TTLL 如何专门用于特定的底物识别,最终产生修饰模式,在很大程度上尚不清楚。TTLL6 是一种与纤毛病相关的谷氨酸酶,它优先修饰微管中的α-微管蛋白尾巴。低温电子显微镜、动力学分析和单分子生物化学揭示了一种前所未有的四价识别,确保了微管几何形状和翻译后修饰状态的同时读取。通过与β-微管蛋白亚基结合,TTLL6 修饰纵向相邻微管蛋白二聚体的α-尾巴。沿着和横跨原纤维(PFs)跨越两个微管蛋白二聚体,确保了对α-尾巴和微管的识别的保真度。此外,TTLL6 通过侧向相邻微管蛋白二聚体β-尾巴的谷氨酸化读取和被刺激,介导α-尾巴和β-尾巴之间的串扰。这种正反馈环可以产生局部微管谷氨酸化模式。我们的工作揭示了产生微管化学和拓扑复杂性的一般原则。