Suppr超能文献

非自主性DAF-16/FOXO活性拮抗秀丽隐杆线虫生殖系干细胞/祖细胞与衰老相关的损失。

Non-autonomous DAF-16/FOXO activity antagonizes age-related loss of C. elegans germline stem/progenitor cells.

作者信息

Qin Zhao, Hubbard E Jane Albert

机构信息

Departments of Cell Biology and Pathology, The Helen L. and Martin S. Kimmel Center for Stem Cell Biology, Skirball Institute for Biomolecular Medicine, New York University School of Medicine, 540 First Avenue, New York, New York, USA.

出版信息

Nat Commun. 2015 May 11;6:7107. doi: 10.1038/ncomms8107.

Abstract

Stem cells maintain tissues and organs over the lifespan of individuals. How aging influences this process is unclear. Here we investigate the effects of aging on C. elegans germline stem/progenitor cells and show that the progenitor pool is depleted over time in a manner dependent on inhibition of DAF-16/FOXO by insulin/IGF-1 signalling (IIS). Our data indicate that DAF-16/FOXO activity in certain somatic gonad cells is required for germline progenitor maintenance, and that this role is separable from the effect of DAF-16/FOXO on organismal aging. In addition, blocking germ cell flux, similar to reducing IIS, maintains germline progenitors. This effect is partially dependent on gonadal DAF-16/FOXO activity. Our results imply that (1) longevity pathways can regulate aging stem cells through anatomically separable mechanisms, (2) stem cell maintenance is not necessarily prioritized and (3) stem cell regulation can occur at the level of an entire organ system such as the reproductive system.

摘要

干细胞在个体的整个生命周期中维持组织和器官的功能。衰老如何影响这一过程尚不清楚。在这里,我们研究了衰老对秀丽隐杆线虫生殖系干细胞/祖细胞的影响,并表明祖细胞池会随着时间的推移而减少,其方式依赖于胰岛素/胰岛素样生长因子-1信号通路(IIS)对DAF-16/FOXO的抑制作用。我们的数据表明,某些体细胞性腺细胞中的DAF-16/FOXO活性是生殖系祖细胞维持所必需的,并且这一作用与DAF-16/FOXO对机体衰老的影响是可分离的。此外,阻断生殖细胞通量,类似于降低IIS,可维持生殖系祖细胞。这种效应部分依赖于性腺中的DAF-16/FOXO活性。我们的结果表明:(1)长寿通路可通过解剖学上可分离的机制调节衰老的干细胞;(2)干细胞的维持不一定具有优先性;(3)干细胞调节可发生在整个器官系统水平,如生殖系统。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a500/4432587/db2a2bc3eef7/ncomms8107-f1.jpg

相似文献

2
C. elegans DAF-16/FOXO interacts with TGF-ß/BMP signaling to induce germline tumor formation via mTORC1 activation.
PLoS Genet. 2017 May 26;13(5):e1006801. doi: 10.1371/journal.pgen.1006801. eCollection 2017 May.
4
The C. elegans adult neuronal IIS/FOXO transcriptome reveals adult phenotype regulators.
Nature. 2016 Jan 7;529(7584):92-6. doi: 10.1038/nature16483. Epub 2015 Dec 14.
5
The protein kinase MBK-1 contributes to lifespan extension in mutant and germline-deficient .
Aging (Albany NY). 2017 May 25;9(5):1414-1432. doi: 10.18632/aging.101244.
6
7
Cell-nonautonomous signaling of FOXO/DAF-16 to the stem cells of Caenorhabditis elegans.
PLoS Genet. 2012;8(8):e1002836. doi: 10.1371/journal.pgen.1002836. Epub 2012 Aug 16.
8
SMK-1, an essential regulator of DAF-16-mediated longevity.
Cell. 2006 Mar 10;124(5):1039-53. doi: 10.1016/j.cell.2005.12.042.
9
A pathway that links reproductive status to lifespan in Caenorhabditis elegans.
Ann N Y Acad Sci. 2010 Aug;1204:156-62. doi: 10.1111/j.1749-6632.2010.05640.x.
10
Cell-nonautonomous effects of dFOXO/DAF-16 in aging.
Cell Rep. 2014 Feb 27;6(4):608-16. doi: 10.1016/j.celrep.2014.01.015. Epub 2014 Feb 6.

引用本文的文献

1
Notch signaling in germ line stem cells controls reproductive aging in .
PNAS Nexus. 2025 Aug 26;4(8):pgaf220. doi: 10.1093/pnasnexus/pgaf220. eCollection 2025 Aug.
2
Non-autonomy of age-related morphological changes in the germline stem cell niche.
bioRxiv. 2025 Jun 16:2025.06.13.658151. doi: 10.1101/2025.06.13.658151.
3
Faster genetic mapping of complex traits in .
MicroPubl Biol. 2025 Apr 23;2025. doi: 10.17912/micropub.biology.001544. eCollection 2025.
4
Non-autonomous insulin signaling delays mitotic progression in C. elegans germline stem and progenitor cells.
PLoS Genet. 2024 Dec 23;20(12):e1011351. doi: 10.1371/journal.pgen.1011351. eCollection 2024 Dec.
5
The Effect of glna Loss on the Physiological and Pathological Phenotype of Parkinson's Disease C. elegans.
J Clin Lab Anal. 2024 Dec;38(24):e25129. doi: 10.1002/jcla.25129. Epub 2024 Nov 26.
6
Non-cell-autonomous regulation of germline proteostasis by insulin/IGF-1 signaling-induced dietary peptide uptake via PEPT-1.
EMBO J. 2024 Nov;43(21):4892-4921. doi: 10.1038/s44318-024-00234-x. Epub 2024 Sep 16.
8
Molecular mechanisms of aging and anti-aging strategies.
Cell Commun Signal. 2024 May 24;22(1):285. doi: 10.1186/s12964-024-01663-1.
10
Timing of TORC1 inhibition dictates Pol III involvement in longevity.
Life Sci Alliance. 2024 May 13;7(7). doi: 10.26508/lsa.202402735. Print 2024 Jul.

本文引用的文献

1
Insulin/insulin-like growth factor signaling in C. elegans.
WormBook. 2013 Dec 26:1-43. doi: 10.1895/wormbook.1.164.1.
2
Mating induces shrinking and death in Caenorhabditis mothers.
Science. 2014 Jan 31;343(6170):536-40. doi: 10.1126/science.1242958. Epub 2013 Dec 19.
3
Germline stem cells and their regulation in the nematode Caenorhabditis elegans.
Adv Exp Med Biol. 2013;786:29-46. doi: 10.1007/978-94-007-6621-1_3.
4
Mechanisms that regulate stem cell aging and life span.
Cell Stem Cell. 2013 Feb 7;12(2):152-65. doi: 10.1016/j.stem.2013.01.001.
6
Fertilization.
Adv Exp Med Biol. 2013;757:321-50. doi: 10.1007/978-1-4614-4015-4_11.
7
Control of oocyte growth and meiotic maturation in Caenorhabditis elegans.
Adv Exp Med Biol. 2013;757:277-320. doi: 10.1007/978-1-4614-4015-4_10.
8
Physiological control of germline development.
Adv Exp Med Biol. 2013;757:101-31. doi: 10.1007/978-1-4614-4015-4_5.
9
Stem cell proliferation versus meiotic fate decision in Caenorhabditis elegans.
Adv Exp Med Biol. 2013;757:71-99. doi: 10.1007/978-1-4614-4015-4_4.
10
Sex determination in the Caenorhabditis elegans germline.
Adv Exp Med Biol. 2013;757:41-69. doi: 10.1007/978-1-4614-4015-4_3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验