Suppr超能文献

在长期护理机构中进行前瞻性流感暴发检测的建筑层面分析:纽约市,2013 - 2014年

Building-level analyses to prospectively detect influenza outbreaks in long-term care facilities: New York City, 2013-2014.

作者信息

Levin-Rector Alison, Nivin Beth, Yeung Alice, Fine Annie D, Greene Sharon K

机构信息

Bureau of Communicable Disease, New York City Department of Health and Mental Hygiene, Queens, NY.

Bureau of Communicable Disease, New York City Department of Health and Mental Hygiene, Queens, NY.

出版信息

Am J Infect Control. 2015 Aug;43(8):839-43. doi: 10.1016/j.ajic.2015.03.037. Epub 2015 May 8.

Abstract

BACKGROUND

Timely outbreak detection is necessary to successfully control influenza in long-term care facilities (LTCFs) and other institutions. To supplement nosocomial outbreak reports, calls from infection control staff, and active laboratory surveillance, the New York City (NYC) Department of Health and Mental Hygiene implemented an automated building-level analysis to proactively identify LTCFs with laboratory-confirmed influenza activity.

METHODS

Geocoded addresses of LTCFs in NYC were compared with geocoded residential addresses for all case-patients with laboratory-confirmed influenza reported through passive surveillance. An automated daily analysis used the geocoded building identification number, approximate text matching, and key-word searches to identify influenza in residents of LTCFs for review and follow-up by surveillance coordinators. Our aim was to determine whether the building analysis improved prospective outbreak detection during the 2013-2014 influenza season.

RESULTS

Of 119 outbreaks identified in LTCFs, 109 (92%) were ever detected by the building analysis, and 55 (46%) were first detected by the building analysis. Of the 5,953 LTCF staff and residents who received antiviral prophylaxis during the 2013-2014 season, 929 (16%) were at LTCFs where outbreaks were initially detected by the building analysis.

CONCLUSIONS

A novel building-level analysis improved influenza outbreak identification in LTCFs in NYC, prompting timely infection control measures.

摘要

背景

及时发现疫情对于在长期护理机构(LTCF)及其他机构成功控制流感至关重要。为了补充医院内疫情报告、感染控制人员的电话报告以及主动实验室监测,纽约市卫生和精神卫生部门实施了一项自动化的机构层面分析,以主动识别有实验室确诊流感活动的长期护理机构。

方法

将纽约市长期护理机构的地理编码地址与通过被动监测报告的所有实验室确诊流感病例患者的地理编码居住地址进行比较。一项自动化的每日分析利用地理编码的机构识别号码、近似文本匹配和关键词搜索来识别长期护理机构居民中的流感,以供监测协调员审查和跟进。我们的目的是确定在2013 - 2014流感季节,机构分析是否改善了前瞻性疫情检测。

结果

在长期护理机构中确定的119起疫情中,109起(92%)曾被机构分析检测到,55起(46%)首次被机构分析检测到。在2013 - 2014季节接受抗病毒预防的5953名长期护理机构工作人员和居民中,929名(16%)所在的长期护理机构疫情最初是由机构分析检测到的。

结论

一种新型的机构层面分析改善了纽约市长期护理机构中流感疫情的识别,促使及时采取感染控制措施。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验