Suppr超能文献

利用通过学校调查收集的接触血清学指标对疟疾流行情况进行地质统计学建模。

Geostatistical modeling of malaria endemicity using serological indicators of exposure collected through school surveys.

作者信息

Ashton Ruth A, Kefyalew Takele, Rand Alison, Sime Heven, Assefa Ashenafi, Mekasha Addis, Edosa Wasihun, Tesfaye Gezahegn, Cano Jorge, Teka Hiwot, Reithinger Richard, Pullan Rachel L, Drakeley Chris J, Brooker Simon J

出版信息

Am J Trop Med Hyg. 2015 Jul;93(1):168-177. doi: 10.4269/ajtmh.14-0620. Epub 2015 May 11.

Abstract

Ethiopia has a diverse ecology and geography resulting in spatial and temporal variation in malaria transmission. Evidence-based strategies are thus needed to monitor transmission intensity and target interventions. A purposive selection of dried blood spots collected during cross-sectional school-based surveys in Oromia Regional State, Ethiopia, were tested for presence of antibodies against Plasmodium falciparum and P. vivax antigens. Spatially explicit binomial models of seroprevalence were created for each species using a Bayesian framework, and used to predict seroprevalence at 5 km resolution across Oromia. School seroprevalence showed a wider prevalence range than microscopy for both P. falciparum (0-50% versus 0-12.7%) and P. vivax (0-53.7% versus 0-4.5%), respectively. The P. falciparum model incorporated environmental predictors and spatial random effects, while P. vivax seroprevalence first-order trends were not adequately explained by environmental variables, and a spatial smoothing model was developed. This is the first demonstration of serological indicators being used to detect large-scale heterogeneity in malaria transmission using samples from cross-sectional school-based surveys. The findings support the incorporation of serological indicators into periodic large-scale surveillance such as Malaria Indicator Surveys, and with particular utility for low transmission and elimination settings.

摘要

埃塞俄比亚生态和地理环境多样,导致疟疾传播存在时空差异。因此,需要基于证据的策略来监测传播强度并确定干预目标。对在埃塞俄比亚奥罗米亚州基于学校的横断面调查中收集的干血斑进行了有目的的选择,检测其中针对恶性疟原虫和间日疟原虫抗原的抗体。使用贝叶斯框架为每个物种创建了血清阳性率的空间明确二项式模型,并用于预测奥罗米亚州5公里分辨率下的血清阳性率。对于恶性疟原虫(分别为0 - 50%对0 - 12.7%)和间日疟原虫(分别为0 - 53.7%对0 - 4.5%),学校血清阳性率的流行范围比显微镜检查显示的更广。恶性疟原虫模型纳入了环境预测因子和空间随机效应,而环境变量不能充分解释间日疟原虫血清阳性率的一阶趋势,因此开发了空间平滑模型。这是首次证明使用基于学校的横断面调查样本,血清学指标可用于检测疟疾传播中的大规模异质性。这些发现支持将血清学指标纳入定期大规模监测,如疟疾指标调查,尤其适用于低传播和消除疟疾的环境。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cf77/4497890/6b9a86fc6aa9/tropmed-93-168-g003.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验