Knowles D B, Shkel Irina A, Phan Noel M, Sternke Matt, Lingeman Emily, Cheng Xian, Cheng Lixue, O'Connor Kevin, Record M Thomas
†Department of Biochemistry, ‡Department of Chemistry, and §Program in Biophysics, University of Wisconsin-Madison, 433 Babcock Drive, Madison, Wisconsin 53706, United States.
Biochemistry. 2015 Jun 9;54(22):3528-42. doi: 10.1021/acs.biochem.5b00246. Epub 2015 May 22.
In this work, we obtain the data needed to predict chemical interactions of polyethylene glycols (PEGs) and glycerol with proteins and related organic compounds and thereby interpret or predict chemical effects of PEGs on protein processes. To accomplish this, we determine interactions of glycerol and tetraEG with >30 model compounds displaying the major C, N, and O functional groups of proteins. Analysis of these data yields coefficients (α values) that quantify interactions of glycerol, tetraEG, and PEG end (-CH2OH) and interior (-CH2OCH2-) groups with these groups, relative to interactions with water. TetraEG (strongly) and glycerol (weakly) interact favorably with aromatic C, amide N, and cationic N, but unfavorably with amide O, carboxylate O, and salt ions. Strongly unfavorable O and salt anion interactions help make both small and large PEGs effective protein precipitants. Interactions of tetraEG and PEG interior groups with aliphatic C are quite favorable, while interactions of glycerol and PEG end groups with aliphatic C are not. Hence, tetraEG and PEG300 favor unfolding of the DNA-binding domain of lac repressor (lacDBD), while glycerol and di- and monoethylene glycol are stabilizers. Favorable interactions with aromatic and aliphatic C explain why PEG400 greatly increases the solubility of aromatic hydrocarbons and steroids. PEG400-steroid interactions are unusually favorable, presumably because of simultaneous interactions of multiple PEG interior groups with the fused ring system of the steroid. Using α values reported here, chemical contributions to PEG m-values can be predicted or interpreted in terms of changes in water-accessible surface area (ΔASA) and separated from excluded volume effects.
在本研究中,我们获取了预测聚乙二醇(PEGs)和甘油与蛋白质及相关有机化合物之间化学相互作用所需的数据,从而解释或预测PEGs对蛋白质过程的化学影响。为实现这一目标,我们测定了甘油和四甘醇与30多种模型化合物的相互作用,这些模型化合物展示了蛋白质的主要碳、氮和氧官能团。对这些数据的分析得出了系数(α值),该系数量化了甘油、四甘醇、PEG末端(-CH2OH)和内部(-CH2OCH2-)基团与这些基团的相互作用,相对于与水的相互作用。四甘醇(强烈地)和甘油(微弱地)与芳香族碳、酰胺氮和阳离子氮发生有利的相互作用,但与酰胺氧、羧酸根氧和盐离子发生不利的相互作用。强烈不利的氧和盐阴离子相互作用有助于使大小不同的PEGs都成为有效的蛋白质沉淀剂。四甘醇和PEG内部基团与脂肪族碳的相互作用非常有利,而甘油和PEG末端基团与脂肪族碳的相互作用则不然。因此, 四甘醇和PEG300有利于乳糖阻遏物(lacDBD)的DNA结合结构域展开,而甘油以及二甘醇和单甘醇则是稳定剂。与芳香族和脂肪族碳的有利相互作用解释了为什么PEG400能大大提高芳香烃和类固醇的溶解度。PEG400与类固醇的相互作用异常有利,大概是因为多个PEG内部基团与类固醇的稠环系统同时发生相互作用。利用本文报道的α值,可以根据水可及表面积(ΔASA)的变化预测或解释对PEG m值的化学贡献,并将其与排除体积效应区分开来。