Suppr超能文献

下一代测序与大数据时代的癌症研究需要智能建模。

Cancer research in the era of next-generation sequencing and big data calls for intelligent modeling.

作者信息

Yli-Hietanen Jari, Ylipää Antti, Yli-Harja Olli

机构信息

Department of Signal Processing, Tampere University of Technology, P. O. Box 553, Tampere, 33101, Finland.

出版信息

Chin J Cancer. 2015 Apr 11;34(10):423-6. doi: 10.1186/s40880-015-0008-8.

Abstract

We examine the role of big data and machine learning in cancer research. We describe an example in cancer research where gene-level data from The Cancer Genome Atlas (TCGA) consortium is interpreted using a pathway-level model. As the complexity of computational models increases, their sample requirements grow exponentially. This growth stems from the fact that the number of combinations of variables grows exponentially as the number of variables increases. Thus, a large sample size is needed. The number of variables in a computational model can be reduced by incorporating biological knowledge. One particularly successful way of doing this is by using available gene regulatory, signaling, metabolic, or context-specific pathway information. We conclude that the incorporation of existing biological knowledge is essential for the progress in using big data for cancer research.

摘要

我们研究了大数据和机器学习在癌症研究中的作用。我们描述了一个癌症研究中的例子,其中使用通路水平模型解释了来自癌症基因组图谱(TCGA)联盟的基因水平数据。随着计算模型复杂性的增加,其样本需求呈指数增长。这种增长源于这样一个事实,即变量组合的数量随着变量数量的增加而呈指数增长。因此,需要大量样本。通过纳入生物学知识,可以减少计算模型中的变量数量。一种特别成功的方法是使用可用的基因调控、信号传导、代谢或特定背景的通路信息。我们得出结论,纳入现有生物学知识对于利用大数据进行癌症研究的进展至关重要。

相似文献

1
Cancer research in the era of next-generation sequencing and big data calls for intelligent modeling.
Chin J Cancer. 2015 Apr 11;34(10):423-6. doi: 10.1186/s40880-015-0008-8.
2
Introduction: Cancer Gene Networks.
Methods Mol Biol. 2017;1513:1-9. doi: 10.1007/978-1-4939-6539-7_1.
3
A novel procedure on next generation sequencing data analysis using text mining algorithm.
BMC Bioinformatics. 2016 May 13;17(1):213. doi: 10.1186/s12859-016-1075-9.
4
ASEQ: fast allele-specific studies from next-generation sequencing data.
BMC Med Genomics. 2015 Mar 1;8:9. doi: 10.1186/s12920-015-0084-2.
7
RareVar: A Framework for Detecting Low-Frequency Single-Nucleotide Variants.
J Comput Biol. 2017 Jul;24(7):637-646. doi: 10.1089/cmb.2017.0057. Epub 2017 May 25.
8
Archived neonatal dried blood spot samples can be used for accurate whole genome and exome-targeted next-generation sequencing.
Mol Genet Metab. 2013 Sep-Oct;110(1-2):65-72. doi: 10.1016/j.ymgme.2013.06.004. Epub 2013 Jun 13.
9
Modeling genomic regulatory networks with big data.
Trends Genet. 2014 May;30(5):182-91. doi: 10.1016/j.tig.2014.02.005. Epub 2014 Mar 13.
10
Cancer whole-genome sequencing: present and future.
Oncogene. 2015 Dec 3;34(49):5943-50. doi: 10.1038/onc.2015.90. Epub 2015 Mar 30.

引用本文的文献

1
Systematic analyses of glutamine and glutamate metabolisms across different cancer types.
Chin J Cancer. 2017 Nov 7;36(1):88. doi: 10.1186/s40880-017-0255-y.
2
Deep Sequencing of Urinary RNAs for Bladder Cancer Molecular Diagnostics.
Clin Cancer Res. 2017 Jul 15;23(14):3700-3710. doi: 10.1158/1078-0432.CCR-16-2610. Epub 2017 Feb 13.
3
Structural analysis of tumor-related single amino acid mutations in human MxA protein.
Chin J Cancer. 2015 Sep 28;34(12):583-93. doi: 10.1186/s40880-015-0055-1.

本文引用的文献

1
Large-scale molecular characterization and analysis of gastric cancer.
Chin J Cancer. 2014 Aug;33(8):369-70. doi: 10.5732/cjc.014.10116.
2
TCGA divides gastric cancer into four molecular subtypes: implications for individualized therapeutics.
Chin J Cancer. 2014 Oct;33(10):469-70. doi: 10.5732/cjc.014.10117. Epub 2014 Sep 16.
3
Characterization of aberrant pathways across human cancers.
BMC Syst Biol. 2013;7 Suppl 1(Suppl 1):S1. doi: 10.1186/1752-0509-7-S1-S1. Epub 2013 Aug 12.
4
Cancer bioinformatics: detection of chromatin states, SNP-containing motifs, and functional enrichment modules.
Chin J Cancer. 2013 Apr;32(4):153-4. doi: 10.5732/cjc.013.10045. Epub 2013 Apr 1.
5
GOMA: functional enrichment analysis tool based on GO modules.
Chin J Cancer. 2013 Apr;32(4):195-204. doi: 10.5732/cjc.012.10151. Epub 2012 Dec 7.
6
Cancer systems biology: signal processing for cancer research.
Chin J Cancer. 2011 Apr;30(4):221-5. doi: 10.5732/cjc.011.10095.
7
Hallmarks of cancer: the next generation.
Cell. 2011 Mar 4;144(5):646-74. doi: 10.1016/j.cell.2011.02.013.
8
Can a biologist fix a radio?--Or, what I learned while studying apoptosis.
Cancer Cell. 2002 Sep;2(3):179-82. doi: 10.1016/s1535-6108(02)00133-2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验