Suppr超能文献

使用计算机模拟识别可能从下鼻甲缩小术中获益的患者。

Identifying patients who may benefit from inferior turbinate reduction using computer simulations.

作者信息

Hariri Benjamin M, Rhee John S, Garcia Guilherme J M

机构信息

Department of Otolaryngology and Communication Sciences, Medical College of Wisconsin, Milwaukee, Wisconsin, U.S.A.

Biotechnology and Bioengineering Center, Medical College of Wisconsin, Milwaukee, Wisconsin, U.S.A.

出版信息

Laryngoscope. 2015 Dec;125(12):2635-41. doi: 10.1002/lary.25367. Epub 2015 May 11.

Abstract

OBJECTIVES/HYPOTHESIS: (1) To determine objective criteria to predict which patients may benefit most from inferior turbinate reduction surgery. (2) To test whether the site of turbinate reduction, either along the nasal floor (bottom resection) or along the septal side (medial resection), impacts the extent to which nasal resistance is reduced.

STUDY DESIGN

Case series.

METHODS

Three-dimensional reconstructions of the nasal anatomy of five nasal airway obstruction patients were created based on presurgical computed tomography scans. Inferior turbinate reduction models were created for each patient using virtual surgery. Airflow, heat transfer, and humidity transport during inspiration were simulated using computational fluid dynamics (CFD).

RESULTS

Nasal resistance curves revealed little to no difference between bottom resection and medial resection models. In two patients, little change was observed in nasal resistance after virtual inferior turbinate reduction, which was attributed to the narrowest cross-sections being restricted to the anterior nose (i.e., anterior to the inferior turbinate). The three patients whose nasal resistances decreased substantially after virtual inferior turbinate reduction had a narrower airspace in the turbinate region and higher nasal resistance presurgery. Nasal air conditioning capacity was more affected by medial resections.

CONCLUSIONS

CFD simulations predicted no significant difference in the decrease in nasal resistance between virtual inferior turbinate reductions performed by bottom versus medial resection of the turbinate. However, bottom resections better preserved the calculated humidification efficiency. The simulations predicted that the greatest reduction in nasal resistance occurs in patients with the highest presurgical resistance in the turbinate region.

LEVEL OF EVIDENCE

摘要

目的/假设:(1)确定客观标准,以预测哪些患者可能从下鼻甲缩小手术中获益最大。(2)测试下鼻甲缩小的部位,无论是沿着鼻底(底部切除)还是沿着鼻中隔侧(内侧切除),是否会影响鼻阻力降低的程度。

研究设计

病例系列。

方法

基于术前计算机断层扫描,创建了5例鼻气道阻塞患者鼻腔解剖结构的三维重建模型。使用虚拟手术为每位患者创建下鼻甲缩小模型。利用计算流体动力学(CFD)模拟吸气过程中的气流、热传递和湿度传输。

结果

鼻阻力曲线显示底部切除模型和内侧切除模型之间几乎没有差异。在两名患者中,虚拟下鼻甲缩小术后鼻阻力几乎没有变化,这归因于最窄横截面局限于前鼻(即下鼻甲前方)。在虚拟下鼻甲缩小术后鼻阻力大幅降低的三名患者中,鼻甲区域的气腔较窄,术前鼻阻力较高。鼻调节能力受内侧切除的影响更大。

结论

CFD模拟预测,下鼻甲底部切除与内侧切除的虚拟下鼻甲缩小术在降低鼻阻力方面无显著差异。然而,底部切除能更好地保留计算出的加湿效率。模拟预测,鼻甲区域术前阻力最高的患者鼻阻力降低最大。

证据水平

4级。

相似文献

1
Identifying patients who may benefit from inferior turbinate reduction using computer simulations.
Laryngoscope. 2015 Dec;125(12):2635-41. doi: 10.1002/lary.25367. Epub 2015 May 11.
2
Impact of Middle versus Inferior Total Turbinectomy on Nasal Aerodynamics.
Otolaryngol Head Neck Surg. 2016 Sep;155(3):518-25. doi: 10.1177/0194599816644915. Epub 2016 May 10.
4
Nasal air conditioning following total inferior turbinectomy compared to inferior turbinoplasty - A computational fluid dynamics study.
Clin Biomech (Bristol). 2021 Jan;81:105237. doi: 10.1016/j.clinbiomech.2020.105237. Epub 2020 Nov 22.
5
Numerical simulation of the effects of inferior turbinate surgery on nasal airway heating capacity.
Am J Rhinol Allergy. 2010 Sep-Oct;24(5):e118-22. doi: 10.2500/ajra.2010.24.3511.
6
Comparison between effects of various partial inferior turbinectomy options on nasal airflow: a computer simulation study.
Comput Methods Biomech Biomed Engin. 2013;16(1):112-8. doi: 10.1080/10255842.2011.609481. Epub 2011 Sep 14.
7
A hierarchical stepwise approach to evaluate nasal patency after virtual surgery for nasal airway obstruction.
Clin Biomech (Bristol). 2019 Jan;61:172-180. doi: 10.1016/j.clinbiomech.2018.12.014. Epub 2018 Dec 19.
8
[Simulation of inferior turbinate reduction using computational fluid dynamics methods].
Lin Chuang Er Bi Yan Hou Tou Jing Wai Ke Za Zhi. 2017 Feb 20;31(4):257-261. doi: 10.13201/j.issn.1001-1781.2017.04.004.
9
Aerodynamic effects of inferior turbinate reduction: computational fluid dynamics simulation.
Arch Otolaryngol Head Neck Surg. 2005 Dec;131(12):1102-7. doi: 10.1001/archotol.131.12.1102.
10

引用本文的文献

1
Anatomical determinants of upper airway collapsibility in obstructive sleep apnea: A systematic review and meta-analysis.
Sleep Med Rev. 2023 Apr;68:101741. doi: 10.1016/j.smrv.2022.101741. Epub 2022 Dec 30.
3
A systematic analysis of surgical interventions for the airway in the mature unilateral cleft lip nasal deformity: a single case study.
Int J Comput Assist Radiol Surg. 2022 Jan;17(1):41-53. doi: 10.1007/s11548-021-02396-z. Epub 2021 Jun 2.
4
Normative ranges of nasal airflow variables in healthy adults.
Int J Comput Assist Radiol Surg. 2020 Jan;15(1):87-98. doi: 10.1007/s11548-019-02023-y. Epub 2019 Jul 2.
5
Thermal water delivery in the nose: experimental results describing droplet deposition through computational fluid dynamics.
Acta Otorhinolaryngol Ital. 2019 Dec;39(6):396-403. doi: 10.14639/0392-100X-2250. Epub 2019 Jan 31.
6
A hierarchical stepwise approach to evaluate nasal patency after virtual surgery for nasal airway obstruction.
Clin Biomech (Bristol). 2019 Jan;61:172-180. doi: 10.1016/j.clinbiomech.2018.12.014. Epub 2018 Dec 19.
7
Sensitivity of nasal airflow variables computed via computational fluid dynamics to the computed tomography segmentation threshold.
PLoS One. 2018 Nov 16;13(11):e0207178. doi: 10.1371/journal.pone.0207178. eCollection 2018.
8
9
Virtual Surgery for the Nasal Airway: A Preliminary Report on Decision Support and Technology Acceptance.
JAMA Facial Plast Surg. 2018 Jan 1;20(1):63-69. doi: 10.1001/jamafacial.2017.1554.
10
Estimates of nasal airflow at the nasal cycle mid-point improve the correlation between objective and subjective measures of nasal patency.
Respir Physiol Neurobiol. 2017 Apr;238:23-32. doi: 10.1016/j.resp.2017.01.004. Epub 2017 Jan 9.

本文引用的文献

1
Perception of better nasal patency correlates with increased mucosal cooling after surgery for nasal obstruction.
Otolaryngol Head Neck Surg. 2014 Jan;150(1):139-47. doi: 10.1177/0194599813509776. Epub 2013 Oct 23.
2
Which inferior turbinate reduction technique best decreases nasal obstruction?
Laryngoscope. 2014 Apr;124(4):814-5. doi: 10.1002/lary.24182. Epub 2013 Sep 19.
3
Changes in nasal airflow and heat transfer correlate with symptom improvement after surgery for nasal obstruction.
J Biomech. 2013 Oct 18;46(15):2634-43. doi: 10.1016/j.jbiomech.2013.08.007. Epub 2013 Aug 26.
4
Morphological consequences of lateral outfracture of the inferior turbinate.
J Laryngol Otol. 2013 Mar;127(3):323-8. doi: 10.1017/S0022215112003234.
5
Role of virtual surgery in preoperative planning: assessing the individual components of functional nasal airway surgery.
Arch Facial Plast Surg. 2012 Sep-Oct;14(5):354-9. doi: 10.1001/archfacial.2012.182.
6
Comparison between effects of various partial inferior turbinectomy options on nasal airflow: a computer simulation study.
Comput Methods Biomech Biomed Engin. 2013;16(1):112-8. doi: 10.1080/10255842.2011.609481. Epub 2011 Sep 14.
7
Toward personalized nasal surgery using computational fluid dynamics.
Arch Facial Plast Surg. 2011 Sep-Oct;13(5):305-10. doi: 10.1001/archfacial.2011.18. Epub 2011 Apr 18.
8
Numerical simulation of the effects of inferior turbinate surgery on nasal airway heating capacity.
Am J Rhinol Allergy. 2010 Sep-Oct;24(5):e118-22. doi: 10.2500/ajra.2010.24.3511.
9
Objective measures in aesthetic and functional nasal surgery: perspectives on nasal form and function.
Facial Plast Surg. 2010 Aug;26(4):320-7. doi: 10.1055/s-0030-1262314. Epub 2010 Jul 27.
10
Septal deviation and nasal resistance: an investigation using virtual surgery and computational fluid dynamics.
Am J Rhinol Allergy. 2010 Jan-Feb;24(1):e46-53. doi: 10.2500/ajra.2010.24.3428.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验