Massachusetts Institute of Technology, Institute for Medical Engineering and Science, Harvard-MIT Division for Health Sciences and Technology, E25-449, Cambridge, MA, USA.
School of Engineering and Materials Science, Queen Mary University of London, London, UK.
Adv Healthc Mater. 2015 Aug 5;4(11):1584-99. doi: 10.1002/adhm.201400778. Epub 2015 May 12.
New advances in (nano)biomaterial design coupled with the detailed study of tissue-biomaterial interactions can open a new chapter in personalized medicine, where biomaterials are chosen and designed to match specific tissue types and disease states. The notion of a "one size fits all" biomaterial no longer exists, as growing evidence points to the value of customizing material design to enhance (pre)clinical performance. The complex microenvironment in vivo at different tissue sites exhibits diverse cell types, tissue chemistry, tissue morphology, and mechanical stresses that are further altered by local pathology. This complex and dynamic environment may alter the implanted material's properties and in turn affect its in vivo performance. It is crucial, therefore, to carefully study tissue context and optimize biomaterials considering the implantation conditions. This practice would enable attaining predictable material performance and enhance clinical outcomes.
(纳米)生物材料设计的新进展,加上对组织-生物材料相互作用的详细研究,可以在个性化医疗领域开辟一个新篇章,在这个领域中,生物材料被选择和设计成与特定的组织类型和疾病状态相匹配。“一刀切”的生物材料的概念已经不复存在,因为越来越多的证据表明,定制材料设计以提高(预)临床性能是有价值的。不同组织部位的体内复杂微环境表现出不同的细胞类型、组织化学、组织形态和机械应力,局部病理学进一步改变了这些特性。这种复杂而动态的环境可能会改变植入材料的特性,并反过来影响其体内性能。因此,仔细研究组织背景并根据植入条件优化生物材料至关重要。这种做法将能够实现可预测的材料性能并提高临床效果。