Suppr超能文献

独立验证一种体外方法预测污染土壤中砷的相对生物利用度。

Independent data validation of an in vitro method for the prediction of the relative bioavailability of arsenic in contaminated soils.

机构信息

†Office of Research and Development, United States Environmental Protection Agency, Research Triangle Park, North Carolina 27711, United States.

‡Centre for Environmental Risk Assessment and Remediation, University of South Australia, Mawson Lakes, SA 5095, Australia.

出版信息

Environ Sci Technol. 2015 May 19;49(10):6312-8. doi: 10.1021/acs.est.5b00905. Epub 2015 May 12.

Abstract

In vitro bioaccessibility (IVBA) assays estimate arsenic (As) relative bioavailability (RBA) in contaminated soils to improve accuracy in human exposure assessments. Previous studies correlating soil As IVBA with RBA have been limited by the use of few soil types and sources of As, and the predictive value of As IVBA has not been validated using an independent set of As-contaminated soils. In this study, a robust linear model was developed to predict As RBA in mice using IVBA, and the predictive capability of the model was independently validated using a unique set of As-contaminated soils. Forty As-contaminated soils varying in soil type and contaminant source were included in this study, with 31 soils used for initial model development and nine soils used for independent model validation. The initial model reliably predicted As RBA values in the independent data set, with a mean As RBA prediction error of 5.4%. Following validation, 40 soils were used for final model development, resulting in a linear model with the equation RBA = 0.65 × IVBA + 7.8 and an R(2) of 0.81. The in vivo-in vitro correlation and independent data validation presented provide critical verification necessary for regulatory acceptance in human health risk assessment.

摘要

体外生物可给性 (IVBA) 测定法可估计受污染土壤中砷 (As) 的相对生物利用率 (RBA),从而提高人体暴露评估的准确性。以前将土壤 As 的 IVBA 与 RBA 相关联的研究受到土壤类型和 As 来源数量较少的限制,并且尚未使用独立的一组受 As 污染的土壤来验证 As IVBA 的预测值。在这项研究中,开发了一个稳健的线性模型,以使用 IVBA 预测小鼠中的 As RBA,并使用一组独特的受 As 污染的土壤独立验证了该模型的预测能力。这项研究包括了 40 种不同土壤类型和污染物来源的受 As 污染的土壤,其中 31 种土壤用于初始模型开发,9 种土壤用于独立模型验证。初始模型可可靠地预测独立数据集的 As RBA 值,平均 As RBA 预测误差为 5.4%。验证后,最终模型开发使用了 40 种土壤,得出的线性模型方程为 RBA=0.65×IVBA+7.8,R²为 0.81。体内-体外相关性和独立数据验证提供了在人类健康风险评估中进行监管接受所必需的关键验证。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验