Suppr超能文献

N-糖基化障碍中的一种新表型:由于ALG9基因的致病变异导致的吉列森-凯斯巴赫-西村型骨骼发育不良。

A novel phenotype in N-glycosylation disorders: Gillessen-Kaesbach-Nishimura skeletal dysplasia due to pathogenic variants in ALG9.

作者信息

Tham Emma, Eklund Erik A, Hammarsjö Anna, Bengtson Per, Geiberger Stefan, Lagerstedt-Robinson Kristina, Malmgren Helena, Nilsson Daniel, Grigelionis Gintautas, Conner Peter, Lindgren Peter, Lindstrand Anna, Wedell Anna, Albåge Margareta, Zielinska Katarzyna, Nordgren Ann, Papadogiannakis Nikos, Nishimura Gen, Grigelioniene Giedre

机构信息

Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden.

Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden.

出版信息

Eur J Hum Genet. 2016 Feb;24(2):198-207. doi: 10.1038/ejhg.2015.91. Epub 2015 May 13.

Abstract

A rare lethal autosomal recessive syndrome with skeletal dysplasia, polycystic kidneys and multiple malformations was first described by Gillessen-Kaesbach et al and subsequently by Nishimura et al. The skeletal features uniformly comprise a round pelvis, mesomelic shortening of the upper limbs and defective ossification of the cervical spine. We studied two unrelated families including three affected fetuses with Gillessen-Kaesbach-Nishimura syndrome using whole-exome and Sanger sequencing, comparative genome hybridization and homozygosity mapping. All affected patients were shown to have a novel homozygous splice variant NM_024740.2: c.1173+2T>A in the ALG9 gene, encoding alpha-1,2-mannosyltransferase, involved in the formation of the lipid-linked oligosaccharide precursor of N-glycosylation. RNA analysis demonstrated skipping of exon 10, leading to shorter RNA. Mass spectrometric analysis showed an increase in monoglycosylated transferrin as compared with control tissues, confirming that this is a congenital disorder of glycosylation (CDG). Only three liveborn children with ALG9-CDG have been previously reported, all with missense variants. All three suffered from intellectual disability, muscular hypotonia, microcephaly and renal cysts, but none had skeletal dysplasia. Our study shows that some pathogenic variants in ALG9 can present as a lethal skeletal dysplasia with visceral malformations as the most severe phenotype. The skeletal features overlap with that previously reported for ALG3- and ALG12-CDG, suggesting that this subset of glycosylation disorders constitutes a new diagnostic group of skeletal dysplasias.

摘要

一种罕见的致死性常染色体隐性综合征,伴有骨骼发育不良、多囊肾和多种畸形,最初由吉勒森 - 凯斯巴赫等人描述,随后西村等人也有相关报道。其骨骼特征一致包括圆形骨盆、上肢中节缩短和颈椎骨化缺陷。我们使用全外显子组测序和桑格测序、比较基因组杂交和纯合性定位,研究了两个无关家庭,其中包括三名患有吉勒森 - 凯斯巴赫 - 西村综合征的患病胎儿。所有患病患者均被发现ALG9基因存在一种新的纯合剪接变体NM_024740.2:c.1173 + 2T>A,该基因编码α-1,2-甘露糖基转移酶,参与N-糖基化的脂质连接寡糖前体的形成。RNA分析显示外显子10跳跃,导致RNA变短。质谱分析表明,与对照组织相比,单糖基化转铁蛋白增加,证实这是一种先天性糖基化障碍(CDG)。此前仅报道过三名患有ALG9 - CDG的活产儿,均为错义变体。这三名患者均患有智力残疾、肌张力减退、小头畸形和肾囊肿,但均无骨骼发育不良。我们的研究表明,ALG9中的一些致病变体可表现为以内脏畸形为最严重表型的致死性骨骼发育不良。其骨骼特征与先前报道的ALG3 - 和ALG12 - CDG重叠,表明这一糖基化障碍子集构成了骨骼发育不良的一个新的诊断组。

相似文献

2
Gillessen-Kaesbach-Nishimura syndrome in two fetuses from Turkey.
Am J Med Genet A. 2023 Feb;191(2):617-623. doi: 10.1002/ajmg.a.63024. Epub 2022 Nov 3.
4
Novel ALG12 variants and hydronephrosis in siblings with impaired N-glycosylation.
Brain Dev. 2021 Oct;43(9):945-951. doi: 10.1016/j.braindev.2021.05.013. Epub 2021 Jun 3.
5
ALG12-CDG: An unusual patient without intellectual disability and facial dysmorphism, and with a novel variant.
Mol Genet Genomic Med. 2020 Aug;8(8):e1304. doi: 10.1002/mgg3.1304. Epub 2020 Jun 12.
7
Congenital disorders of glycosylation: The Saudi experience.
Am J Med Genet A. 2017 Oct;173(10):2614-2621. doi: 10.1002/ajmg.a.38358. Epub 2017 Jul 25.
8
ALG9-CDG: New clinical case and review of the literature.
Mol Genet Metab Rep. 2017 Sep 6;13:55-63. doi: 10.1016/j.ymgmr.2017.08.004. eCollection 2017 Dec.
9
Expanded prenatal phenotype of ALG12-associated congenital disorder of glycosylation including bilateral multicystic kidneys.
Am J Med Genet A. 2024 Sep;194(9):e63660. doi: 10.1002/ajmg.a.63660. Epub 2024 May 8.
10
Complex phenotypes in ALG12-congenital disorder of glycosylation (ALG12-CDG): Case series and review of the literature.
Mol Genet Metab. 2019 Dec;128(4):409-414. doi: 10.1016/j.ymgme.2019.08.007. Epub 2019 Aug 26.

引用本文的文献

1
Diagnostic yield of 1000 trio analyses with exome and genome sequencing in a clinical setting.
Front Genet. 2025 Jun 20;16:1580879. doi: 10.3389/fgene.2025.1580879. eCollection 2025.
2
Characterization of the Cystic Phenotype Associated with Monoallelic ALG8 and ALG9 Pathogenic Variants.
J Am Soc Nephrol. 2025 Jun 1;36(6):1056-1071. doi: 10.1681/ASN.0000000613. Epub 2025 Feb 3.
3
Phenotyping of α-1-Antitrypsin by liquid chromatography-high resolution mass spectrometry.
Clin Mass Spectrom. 2017 Feb 20;2:34-40. doi: 10.1016/j.clinms.2017.02.002. eCollection 2016 Dec.
4
Heterozygosity of ALG9 in Association with Autosomal Dominant Polycystic Liver Disease.
Genes (Basel). 2023 Sep 2;14(9):1755. doi: 10.3390/genes14091755.
7
Congenital Disorders of Glycosylation: What Clinicians Need to Know?
Front Pediatr. 2021 Sep 3;9:715151. doi: 10.3389/fped.2021.715151. eCollection 2021.
8
Skeletal and Bone Mineral Density Features, Genetic Profile in Congenital Disorders of Glycosylation: Review.
Diagnostics (Basel). 2021 Aug 9;11(8):1438. doi: 10.3390/diagnostics11081438.
9
Cystic kidney diseases associated with mutations in phosphomannomutase 2 promotor: a large spectrum of phenotypes.
Pediatr Nephrol. 2021 Aug;36(8):2361-2369. doi: 10.1007/s00467-021-04953-9. Epub 2021 Feb 13.
10
Mutation Carriers Develop Kidney and Liver Cysts.
J Am Soc Nephrol. 2019 Nov;30(11):2091-2102. doi: 10.1681/ASN.2019030298. Epub 2019 Aug 8.

本文引用的文献

1
Diagnosis of ALG12-CDG by exome sequencing in a case of severe skeletal dysplasia.
Mol Genet Metab Rep. 2014;1:213-219. doi: 10.1016/j.ymgmr.2014.04.004.
2
Solving glycosylation disorders: fundamental approaches reveal complicated pathways.
Am J Hum Genet. 2014 Feb 6;94(2):161-75. doi: 10.1016/j.ajhg.2013.10.024.
3
Homozygous and heterozygous disruptions of ANK3: at the crossroads of neurodevelopmental and psychiatric disorders.
Hum Mol Genet. 2013 May 15;22(10):1960-70. doi: 10.1093/hmg/ddt043. Epub 2013 Feb 5.
4
Neurology of inherited glycosylation disorders.
Lancet Neurol. 2012 May;11(5):453-66. doi: 10.1016/S1474-4422(12)70040-6.
5
A framework for variation discovery and genotyping using next-generation DNA sequencing data.
Nat Genet. 2011 May;43(5):491-8. doi: 10.1038/ng.806. Epub 2011 Apr 10.
6
Congenital disorders of glycosylation (CDG): it's (nearly) all in it!
J Inherit Metab Dis. 2011 Aug;34(4):853-8. doi: 10.1007/s10545-011-9299-3. Epub 2011 Mar 8.
7
Precision mapping of an in vivo N-glycoproteome reveals rigid topological and sequence constraints.
Cell. 2010 May 28;141(5):897-907. doi: 10.1016/j.cell.2010.04.012.
8
Quality control of glycoproteins bearing truncated glycans in an ALG9-defective (CDG-IL) patient.
Glycobiology. 2009 Aug;19(8):910-7. doi: 10.1093/glycob/cwp067. Epub 2009 May 18.
9
Fast and accurate short read alignment with Burrows-Wheeler transform.
Bioinformatics. 2009 Jul 15;25(14):1754-60. doi: 10.1093/bioinformatics/btp324. Epub 2009 May 18.
10
The skeletal manifestations of the congenital disorders of glycosylation.
Clin Genet. 2008 Jun;73(6):507-15. doi: 10.1111/j.1399-0004.2008.01015.x. Epub 2008 May 6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验