Suppr超能文献

用于具有集总放大的光链路的非线性逆合成技术

Nonlinear inverse synthesis technique for optical links with lumped amplification.

作者信息

Le Son Thai, Prilepsky Jaroslaw E, Turitsyn Sergei K

出版信息

Opt Express. 2015 Apr 6;23(7):8317-28. doi: 10.1364/OE.23.008317.

Abstract

The nonlinear inverse synthesis (NIS) method, in which information is encoded directly onto the continuous part of the nonlinear signal spectrum, has been proposed recently as a promising digital signal processing technique for combating fiber nonlinearity impairments. However, because the NIS method is based on the integrability property of the lossless nonlinear Schrödinger equation, the original approach can only be applied directly to optical links with ideal distributed Raman amplification. In this paper, we propose and assess a modified scheme of the NIS method, which can be used effectively in standard optical links with lumped amplifiers, such as, erbium-doped fiber amplifiers (EDFAs). The proposed scheme takes into account the average effect of the fiber loss to obtain an integrable model (lossless path-averaged model) to which the NIS technique is applicable. We found that the error between lossless path-averaged and lossy models increases linearly with transmission distance and input power (measured in dB). We numerically demonstrate the feasibility of the proposed NIS scheme in a burst mode with orthogonal frequency division multiplexing (OFDM) transmission scheme with advanced modulation formats (e.g., QPSK, 16QAM, and 64QAM), showing a performance improvement up to 3.5 dB; these results are comparable to those achievable with multi-step per span digital back-propagation.

摘要

非线性逆合成(NIS)方法最近被提出,作为一种对抗光纤非线性损伤的有前途的数字信号处理技术,该方法将信息直接编码到非线性信号频谱的连续部分。然而,由于NIS方法基于无损非线性薛定谔方程的可积性,原始方法只能直接应用于具有理想分布式拉曼放大的光链路。在本文中,我们提出并评估了一种NIS方法的改进方案,该方案可有效地用于具有集总放大器(如掺铒光纤放大器(EDFA))的标准光链路。所提出的方案考虑了光纤损耗的平均效应,以获得一个可积模型(无损路径平均模型),NIS技术可应用于该模型。我们发现,无损路径平均模型和有损模型之间的误差随传输距离和输入功率(以dB为单位)线性增加。我们通过数值模拟证明了所提出的NIS方案在具有先进调制格式(如QPSK、16QAM和64QAM)的正交频分复用(OFDM)传输方案的突发模式下的可行性,性能提升高达3.5 dB;这些结果与每跨距多步数字反向传播所能达到的结果相当。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验