Suppr超能文献

影响重组大肠杆菌克隆、表达及大量生产酶成功的关键因素

Critical Factors Affecting the Success of Cloning, Expression, and Mass Production of Enzymes by Recombinant E. coli.

作者信息

Fakruddin Md, Mohammad Mazumdar Reaz, Bin Mannan Khanjada Shahnewaj, Chowdhury Abhijit, Hossain Md Nur

机构信息

Industrial Microbiology Laboratory, Institute of Food Science and Technology (IFST), Bangladesh Council of Scientific and Industrial Research (BCSIR), Dhaka 1205, Bangladesh.

BCSIR Laboratories, Chittagong, Chittagong 4220, Bangladesh.

出版信息

ISRN Biotechnol. 2012 Aug 13;2013:590587. doi: 10.5402/2013/590587. eCollection 2013.

Abstract

E. coli is the most frequently used host for production of enzymes and other proteins by recombinant DNA technology. E. coli is preferable for its relative simplicity, inexpensive and fast high-density cultivation, well-known genetics, and large number of compatible molecular tools available. Despite all these advantages, expression and production of recombinant enzymes are not always successful and often result in insoluble and nonfunctional proteins. There are many factors that affect the success of cloning, expression, and mass production of enzymes by recombinant E. coli. In this paper, these critical factors and approaches to overcome these obstacles are summarized focusing controlled expression of target protein/enzyme in an unmodified form at industrial level.

摘要

大肠杆菌是通过重组DNA技术生产酶和其他蛋白质时最常用的宿主。由于其相对简单、廉价且快速的高密度培养、广为人知的遗传学以及大量可用的兼容分子工具,大肠杆菌是比较理想的选择。尽管有所有这些优点,但重组酶的表达和生产并不总是成功的,并且常常导致产生不溶性和无功能的蛋白质。有许多因素会影响通过重组大肠杆菌克隆、表达和大规模生产酶的成功与否。本文总结了这些关键因素以及克服这些障碍的方法,重点是在工业水平上以未修饰的形式可控表达目标蛋白质/酶。

相似文献

1
Critical Factors Affecting the Success of Cloning, Expression, and Mass Production of Enzymes by Recombinant E. coli.
ISRN Biotechnol. 2012 Aug 13;2013:590587. doi: 10.5402/2013/590587. eCollection 2013.
2
Soluble expression of recombinant proteins in the cytoplasm of Escherichia coli.
Microb Cell Fact. 2005 Jan 4;4(1):1. doi: 10.1186/1475-2859-4-1.
3
Advanced genetic strategies for recombinant protein expression in Escherichia coli.
J Biotechnol. 2005 Jan 26;115(2):113-28. doi: 10.1016/j.jbiotec.2004.08.004.
5
Recombinant Protein Expression in Escherichia coli (E.coli): What We Need to Know.
Curr Pharm Des. 2018;24(6):718-725. doi: 10.2174/1381612824666180131121940.
6
Overcoming challenges for amplified expression of recombinant proteins using Escherichia coli.
Protein Expr Purif. 2018 Apr;144:12-18. doi: 10.1016/j.pep.2017.11.005. Epub 2017 Nov 24.
7
Small-scale expression of proteins in E. coli.
Methods Enzymol. 2014;536:117-31. doi: 10.1016/B978-0-12-420070-8.00011-8.
8
Strategies for optimization of heterologous protein expression in E. coli: Roadblocks and reinforcements.
Int J Biol Macromol. 2018 Jan;106:803-822. doi: 10.1016/j.ijbiomac.2017.08.080. Epub 2017 Aug 19.
9
Revisiting Escherichia coli as microbial factory for enhanced production of human serum albumin.
Microb Cell Fact. 2017 Oct 5;16(1):173. doi: 10.1186/s12934-017-0784-8.
10
Efficient recovery of recombinant CRM197 expressed as inclusion bodies in E.coli.
PLoS One. 2018 Jul 18;13(7):e0201060. doi: 10.1371/journal.pone.0201060. eCollection 2018.

引用本文的文献

3
Low-cost gelatin/collagen scaffolds for bacterial growth in bioreactors for biotechnology.
Appl Microbiol Biotechnol. 2025 May 8;109(1):113. doi: 10.1007/s00253-025-13491-5.
4
An efficient lysate-based approach for biosynthesis of the pyrrolobenzodiazepine natural product tilimycin.
J Biotechnol. 2025 Jun;402:87-95. doi: 10.1016/j.jbiotec.2025.03.012. Epub 2025 Mar 20.
5
Construction and characterization of DNA libraries from cultured phages and environmental viromes.
Appl Environ Microbiol. 2024 Oct 23;90(10):e0117124. doi: 10.1128/aem.01171-24. Epub 2024 Sep 24.
6
The Development of Epitope-Based Recombinant Protein Vaccines against SARS-CoV-2.
AAPS J. 2024 Aug 13;26(5):93. doi: 10.1208/s12248-024-00963-1.
9
Designing a polyvalent vaccine targeting multiple strains of varicella zoster virus using integrated bioinformatics approaches.
Front Microbiol. 2023 Nov 17;14:1291868. doi: 10.3389/fmicb.2023.1291868. eCollection 2023.

本文引用的文献

1
Improvement in recombinant protein production in ppGpp-deficient Escherichia coli.
Biotechnol Bioeng. 1997 Feb 20;53(4):379-86. doi: 10.1002/(SICI)1097-0290(19970220)53:4<379::AID-BIT4>3.0.CO;2-K.
4
Synonymous codon usage in Escherichia coli: selection for translational accuracy.
Mol Biol Evol. 2007 Feb;24(2):374-81. doi: 10.1093/molbev/msl166. Epub 2006 Nov 13.
5
Enhancement of soluble protein expression through the use of fusion tags.
Curr Opin Biotechnol. 2006 Aug;17(4):353-8. doi: 10.1016/j.copbio.2006.06.003. Epub 2006 Jun 15.
6
Soluble expression of recombinant proteins in the cytoplasm of Escherichia coli.
Microb Cell Fact. 2005 Jan 4;4(1):1. doi: 10.1186/1475-2859-4-1.
7
Inclusion bodies: formation and utilisation.
Adv Biochem Eng Biotechnol. 2004;89:93-142. doi: 10.1007/b93995.
8
Secretory and extracellular production of recombinant proteins using Escherichia coli.
Appl Microbiol Biotechnol. 2004 Jun;64(5):625-35. doi: 10.1007/s00253-004-1559-9. Epub 2004 Feb 14.
9
Temperature effect on inclusion body formation and stress response in the periplasm of Escherichia coli.
Mol Microbiol. 2003 Dec;50(5):1579-89. doi: 10.1046/j.1365-2958.2003.03785.x.
10
Multiple sigma subunits and the partitioning of bacterial transcription space.
Annu Rev Microbiol. 2003;57:441-66. doi: 10.1146/annurev.micro.57.030502.090913.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验