Suppr超能文献

膜电容记忆改变了分数阶霍奇金-赫胥黎模型所描述的神经元放电。

Membrane capacitive memory alters spiking in neurons described by the fractional-order Hodgkin-Huxley model.

作者信息

Weinberg Seth H

机构信息

Virginia Modeling, Analysis and Simulation Center, Old Dominion University, 1030 University Boulevard, Suffolk, Virginia, USA.

出版信息

PLoS One. 2015 May 13;10(5):e0126629. doi: 10.1371/journal.pone.0126629. eCollection 2015.

Abstract

Excitable cells and cell membranes are often modeled by the simple yet elegant parallel resistor-capacitor circuit. However, studies have shown that the passive properties of membranes may be more appropriately modeled with a non-ideal capacitor, in which the current-voltage relationship is given by a fractional-order derivative. Fractional-order membrane potential dynamics introduce capacitive memory effects, i.e., dynamics are influenced by a weighted sum of the membrane potential prior history. However, it is not clear to what extent fractional-order dynamics may alter the properties of active excitable cells. In this study, we investigate the spiking properties of the neuronal membrane patch, nerve axon, and neural networks described by the fractional-order Hodgkin-Huxley neuron model. We find that in the membrane patch model, as fractional-order decreases, i.e., a greater influence of membrane potential memory, peak sodium and potassium currents are altered, and spike frequency and amplitude are generally reduced. In the nerve axon, the velocity of spike propagation increases as fractional-order decreases, while in a neural network, electrical activity is more likely to cease for smaller fractional-order. Importantly, we demonstrate that the modulation of the peak ionic currents that occurs for reduced fractional-order alone fails to reproduce many of the key alterations in spiking properties, suggesting that membrane capacitive memory and fractional-order membrane potential dynamics are important and necessary to reproduce neuronal electrical activity.

摘要

可兴奋细胞和细胞膜通常由简单而精妙的并联电阻 - 电容电路来建模。然而,研究表明,膜的被动特性可能更适合用非理想电容来建模,其中电流 - 电压关系由分数阶导数给出。分数阶膜电位动力学引入了电容记忆效应,即动力学受膜电位先前历史的加权和影响。然而,尚不清楚分数阶动力学在何种程度上可能改变主动可兴奋细胞的特性。在本研究中,我们研究了由分数阶霍奇金 - 赫胥黎神经元模型描述的神经元膜片、神经轴突和神经网络的放电特性。我们发现,在膜片模型中,随着分数阶降低,即膜电位记忆的影响更大,钠和钾电流峰值会发生改变,放电频率和幅度通常会降低。在神经轴突中,放电传播速度随着分数阶降低而增加,而在神经网络中,对于较小的分数阶,电活动更有可能停止。重要的是,我们证明仅分数阶降低时发生的峰值离子电流调制无法重现放电特性的许多关键变化,这表明膜电容记忆和分数阶膜电位动力学对于重现神经元电活动是重要且必要的。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验