Suppr超能文献

使用电子鼻技术对糖尿病足感染的单一和多种微生物物种进行体外诊断。

In-vitro diagnosis of single and poly microbial species targeted for diabetic foot infection using e-nose technology.

作者信息

Yusuf Nurlisa, Zakaria Ammar, Omar Mohammad Iqbal, Shakaff Ali Yeon Md, Masnan Maz Jamilah, Kamarudin Latifah Munirah, Abdul Rahim Norasmadi, Zakaria Nur Zawatil Isqi, Abdullah Azian Azamimi, Othman Amizah, Yasin Mohd Sadek

机构信息

Centre of Excellence for Advanced Sensor Technology, Universiti Malaysia Perlis, Perlis, Malaysia.

Institute for Engineering Mathematics, Universiti Malaysia Perlis, Perlis, Malaysia.

出版信息

BMC Bioinformatics. 2015 May 14;16(1):158. doi: 10.1186/s12859-015-0601-5.

Abstract

BACKGROUND

Effective management of patients with diabetic foot infection is a crucial concern. A delay in prescribing appropriate antimicrobial agent can lead to amputation or life threatening complications. Thus, this electronic nose (e-nose) technique will provide a diagnostic tool that will allow for rapid and accurate identification of a pathogen.

RESULTS

This study investigates the performance of e-nose technique performing direct measurement of static headspace with algorithm and data interpretations which was validated by Headspace SPME-GC-MS, to determine the causative bacteria responsible for diabetic foot infection. The study was proposed to complement the wound swabbing method for bacterial culture and to serve as a rapid screening tool for bacteria species identification. The investigation focused on both single and poly microbial subjected to different agar media cultures. A multi-class technique was applied including statistical approaches such as Support Vector Machine (SVM), K Nearest Neighbor (KNN), Linear Discriminant Analysis (LDA) as well as neural networks called Probability Neural Network (PNN). Most of classifiers successfully identified poly and single microbial species with up to 90% accuracy.

CONCLUSIONS

The results obtained from this study showed that the e-nose was able to identify and differentiate between poly and single microbial species comparable to the conventional clinical technique. It also indicates that even though poly and single bacterial species in different agar solution emit different headspace volatiles, they can still be discriminated and identified using multivariate techniques.

摘要

背景

糖尿病足感染患者的有效管理是一个至关重要的问题。延迟开具适当的抗菌药物可能导致截肢或危及生命的并发症。因此,这种电子鼻技术将提供一种诊断工具,能够快速准确地识别病原体。

结果

本研究调查了电子鼻技术通过算法和数据解读对静态顶空进行直接测量的性能,该技术通过顶空固相微萃取-气相色谱-质谱联用(Headspace SPME-GC-MS)进行了验证,以确定导致糖尿病足感染的致病细菌。该研究旨在补充伤口拭子细菌培养方法,并作为细菌种类鉴定的快速筛查工具。调查集中在单微生物和多微生物在不同琼脂培养基中的培养情况。应用了多分类技术,包括支持向量机(SVM)、K近邻(KNN)、线性判别分析(LDA)等统计方法以及概率神经网络(PNN)等神经网络。大多数分类器成功识别了多微生物和单微生物种类,准确率高达90%。

结论

本研究获得的结果表明,电子鼻能够识别并区分多微生物和单微生物种类,与传统临床技术相当。这也表明,尽管不同琼脂溶液中的多细菌和单细菌种类会释放不同的顶空挥发物,但仍可使用多变量技术对它们进行区分和识别。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/eb29/4430918/d9f748b31742/12859_2015_601_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验