Fuerst Oliver, Lin Yibin, Granell Meritxell, Leblanc Gérard, Padrós Esteve, Lórenz-Fonfría Víctor A, Cladera Josep
From the Unitat de Biofísica, Departament de Bioquímica i de Biologia Molecular, Facultat de Medicina, and Centre d'Estudis en Biofísica, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain.
the Direction des Sciences du Vivant, Direction des progammes et valorization, CEA Fontenay-aux-Roses, 92265 Fontenay-aux-Roses Cedex, France, and.
J Biol Chem. 2015 Jun 26;290(26):16261-71. doi: 10.1074/jbc.M115.642678. Epub 2015 May 13.
We examine the role of Lys-377, the only charged residue in helix XI, on the functional mechanism of the Na(+)-sugar melibiose symporter from Escherichia coli. Intrinsic fluorescence, FRET, and Fourier transform infrared difference spectroscopy reveal that replacement of Lys-377 with either Cys, Val, Arg, or Asp disables both Na(+) and melibiose binding. On the other hand, molecular dynamics simulations extending up to 200-330 ns reveal that Lys-377 (helix XI) interacts with the anionic side chains of two of the three putative ligands for cation binding (Asp-55 and Asp-59 in helix II). When Asp-59 is protonated during the simulations, Lys-377 preferentially interacts with Asp-55. Interestingly, when a Na(+) ion is positioned in the Asp-55-Asp-59 environment, Asp-124 in helix IV (a residue essential for melibiose binding) reorients and approximates the Asp-55-Asp-59 pair, and all three acidic side chains act as Na(+) ligands. Under these conditions, the side chain of Lys-377 interacts with the carboxylic moiety of these three Asp residues. These data highlight the crucial role of the Lys-377 residue in the spatial organization of the Na(+) binding site. Finally, the analysis of the second-site revertants of K377C reveals that mutation of Ile-22 (in helix I) preserves Na(+) binding, whereas that of melibiose is largely abolished according to spectroscopic measurements. This amino acid is located in the border of the sugar-binding site and might participate in sugar binding through apolar interactions.
我们研究了赖氨酸-377(螺旋XI中唯一的带电荷残基)在大肠杆菌钠-蜜二糖同向转运蛋白功能机制中的作用。本征荧光、荧光共振能量转移和傅里叶变换红外差光谱表明,用半胱氨酸、缬氨酸、精氨酸或天冬氨酸取代赖氨酸-377会使钠和蜜二糖的结合均失效。另一方面,长达200 - 330纳秒的分子动力学模拟表明,赖氨酸-377(螺旋XI)与三个假定的阳离子结合配体中的两个阴离子侧链相互作用(螺旋II中的天冬氨酸-55和天冬氨酸-59)。在模拟过程中,当天冬氨酸-59质子化时,赖氨酸-377优先与天冬氨酸-55相互作用。有趣的是,当一个钠离子位于天冬氨酸-55 - 天冬氨酸-59环境中时,螺旋IV中的天冬氨酸-124(蜜二糖结合所必需的残基)重新定向并靠近天冬氨酸-55 - 天冬氨酸-59对,并且所有三个酸性侧链都作为钠配体。在这些条件下,赖氨酸-377的侧链与这三个天冬氨酸残基的羧基部分相互作用。这些数据突出了赖氨酸-377残基在钠结合位点空间组织中的关键作用。最后,对K377C的第二位点回复突变体的分析表明,异亮氨酸-22(螺旋I中)的突变保留了钠的结合,而根据光谱测量,蜜二糖的结合在很大程度上被消除。该氨基酸位于糖结合位点的边界,可能通过非极性相互作用参与糖的结合。