Suppr超能文献

大型细胞轮藻科单细胞水平的耐盐性

Salt tolerance at single cell level in giant-celled Characeae.

作者信息

Beilby Mary J

机构信息

Plant Membrane Biophysics, Physics/Biophysics, School of Physics, University of New South Wales, Sydney, NSW Australia.

出版信息

Front Plant Sci. 2015 Apr 28;6:226. doi: 10.3389/fpls.2015.00226. eCollection 2015.

Abstract

Characean plants provide an excellent experimental system for electrophysiology and physiology due to: (i) very large cell size, (ii) position on phylogenetic tree near the origin of land plants and (iii) continuous spectrum from very salt sensitive to very salt tolerant species. A range of experimental techniques is described, some unique to characean plants. Application of these methods provided electrical characteristics of membrane transporters, which dominate the membrane conductance under different outside conditions. With this considerable background knowledge the electrophysiology of salt sensitive and salt tolerant genera can be compared under salt and/or osmotic stress. Both salt tolerant and salt sensitive Characeae show a rise in membrane conductance and simultaneous increase in Na(+) influx upon exposure to saline medium. Salt tolerant Chara longifolia and Lamprothamnium sp. exhibit proton pump stimulation upon both turgor decrease and salinity increase, allowing the membrane PD to remain negative. The turgor is regulated through the inward K(+) rectifier and 2H(+)/Cl(-) symporter. Lamprothamnium plants can survive in hypersaline media up to twice seawater strength and withstand large sudden changes in salinity. Salt sensitive C. australis succumbs to 50-100 mM NaCl in few days. Cells exhibit no pump stimulation upon turgor decrease and at best transient pump stimulation upon salinity increase. Turgor is not regulated. The membrane PD exhibits characteristic noise upon exposure to salinity. Depolarization of membrane PD to excitation threshold sets off trains of action potentials, leading to further loses of K(+) and Cl(-). In final stages of salt damage the H(+)/OH(-) channels are thought to become the dominant transporter, dissipating the proton gradient and bringing the cell PD close to 0. The differences in transporter electrophysiology and their synergy under osmotic and/or saline stress in salt sensitive and salt tolerant characean cells are discussed in detail.

摘要

轮藻植物为电生理学和生理学提供了一个出色的实验系统,原因如下:(i)细胞体积非常大;(ii)在系统发育树上的位置靠近陆地植物的起源;(iii)从对盐非常敏感到对盐具有高度耐受性的物种形成了连续谱系。文中描述了一系列实验技术,其中一些是轮藻植物所特有的。应用这些方法得出了膜转运蛋白的电学特性,这些特性在不同外部条件下主导着膜电导。基于这些丰富的背景知识,可以在盐胁迫和/或渗透胁迫下比较盐敏感和耐盐属的电生理学。耐盐和盐敏感的轮藻在暴露于盐溶液介质时均表现出膜电导增加以及Na(+)内流同时增加。耐盐的长叶轮藻和灯枝轮藻属植物在膨压降低和盐度增加时均表现出质子泵的激活,从而使膜电位保持为负。膨压通过内向K(+)整流器和2H(+)/Cl(-)共转运体进行调节。灯枝轮藻属植物能够在盐度高达海水两倍强度的高盐介质中存活,并能承受盐度的大幅突然变化。盐敏感的澳大利亚轮藻在几天内就会死于50 - 100 mM的NaCl。细胞在膨压降低时不表现出泵的激活,在盐度增加时最多表现出短暂的泵激活。膨压不受调节。膜电位在暴露于盐度时表现出特征性的噪声。膜电位去极化至兴奋阈值会引发一系列动作电位,导致K(+)和Cl(-)进一步流失。在盐损伤的最后阶段,H(+)/OH(-)通道被认为成为主要的转运体,消耗质子梯度并使细胞电位接近0。文中详细讨论了盐敏感和耐盐轮藻细胞在渗透和/或盐胁迫下转运体电生理学的差异及其协同作用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/af37/4412000/33399051d960/fpls-06-00226-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验