Suppr超能文献

从海上升起:植物中硫酸多糖与盐度的相关性。

Rising from the sea: correlations between sulfated polysaccharides and salinity in plants.

机构信息

Laboratório de Tecido Conjuntivo, Instituto de Bioquímica Médica and Hospital Universitário Clementino Fraga Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil.

出版信息

PLoS One. 2011 Apr 28;6(4):e18862. doi: 10.1371/journal.pone.0018862.

Abstract

High salinity soils inhibit crop production worldwide and represent a serious agricultural problem. To meet our ever-increasing demand for food, it is essential to understand and engineer salt-resistant crops. In this study, we evaluated the occurrence and function of sulfated polysaccharides in plants. Although ubiquitously present in marine algae, the presence of sulfated polysaccharides among the species tested was restricted to halophytes, suggesting a possible correlation with salt stress or resistance. To test this hypothesis, sulfated polysaccharides from plants artificially and naturally exposed to different salinities were analyzed. Our results revealed that the sulfated polysaccharide concentration, as well as the degree to which these compounds were sulfated in halophytic species, were positively correlated with salinity. We found that sulfated polysaccharides produced by Ruppia maritima Loisel disappeared when the plant was cultivated in the absence of salt. However, subjecting the glycophyte Oryza sativa Linnaeus to salt stress did not induce the biosynthesis of sulfated polysaccharides but increased the concentration of the carboxylated polysaccharides; this finding suggests that negatively charged cell wall polysaccharides might play a role in coping with salt stress. These data suggest that the presence of sulfated polysaccharides in plants is an adaptation to high salt environments, which may have been conserved during plant evolution from marine green algae. Our results address a practical biological concept; additionally, we suggest future strategies that may be beneficial when engineering salt-resistant crops.

摘要

高盐土壤抑制了全球的作物生产,是一个严重的农业问题。为了满足我们对食物日益增长的需求,了解和培育耐盐作物至关重要。在这项研究中,我们评估了植物中硫酸多糖的存在和功能。尽管硫酸多糖广泛存在于海洋藻类中,但在所测试的物种中,硫酸多糖的存在仅限于盐生植物,这表明它们可能与盐胁迫或耐盐性有关。为了验证这一假设,我们分析了人工和自然暴露于不同盐度下的植物中的硫酸多糖。研究结果表明,盐生植物中硫酸多糖的浓度以及这些化合物的硫酸化程度与盐度呈正相关。我们发现,当在没有盐的情况下培养 Ruppia maritima Loisel 时,其产生的硫酸多糖会消失。然而,将盐生植物 Oryza sativa Linnaeus 置于盐胁迫下并不会诱导硫酸多糖的生物合成,反而会增加羧基多糖的浓度;这一发现表明,带负电荷的细胞壁多糖可能在应对盐胁迫中发挥作用。这些数据表明,植物中硫酸多糖的存在是对高盐环境的一种适应,这可能在植物从海洋绿藻进化过程中得到了保留。我们的研究结果解决了一个实际的生物学概念;此外,我们还提出了一些未来的策略,这些策略在培育耐盐作物时可能会有所帮助。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/839e/3084243/fba419070604/pone.0018862.g001.jpg

相似文献

1
Rising from the sea: correlations between sulfated polysaccharides and salinity in plants.
PLoS One. 2011 Apr 28;6(4):e18862. doi: 10.1371/journal.pone.0018862.
2
Early effects of salt stress on the physiological and oxidative status of Cakile maritima (halophyte) and Arabidopsis thaliana (glycophyte).
Physiol Plant. 2011 Jun;142(2):128-43. doi: 10.1111/j.1399-3054.2011.01450.x. Epub 2011 Mar 3.
3
Understanding the salinity resilience and productivity of halophytes in saline environments.
Plant Sci. 2024 Sep;346:112171. doi: 10.1016/j.plantsci.2024.112171. Epub 2024 Jul 3.
4
Occurrence of sulfated galactans in marine angiosperms: evolutionary implications.
Glycobiology. 2005 Jan;15(1):11-20. doi: 10.1093/glycob/cwh138. Epub 2004 Aug 18.
5
Potential use of halophytes to remediate saline soils.
Biomed Res Int. 2014;2014:589341. doi: 10.1155/2014/589341. Epub 2014 Jul 6.
6
Structure, biology, evolution, and medical importance of sulfated fucans and galactans.
Glycobiology. 2008 Dec;18(12):1016-27. doi: 10.1093/glycob/cwn085. Epub 2008 Sep 16.
7
Adaptation Strategies of Halophytic Barley ssp. to High Salinity and Osmotic Stress.
Int J Mol Sci. 2020 Nov 27;21(23):9019. doi: 10.3390/ijms21239019.
9
Halophytes can salinize soil when competing with glycophytes, intensifying effects of sea level rise in coastal communities.
Oecologia. 2017 Jul;184(3):729-737. doi: 10.1007/s00442-017-3896-2. Epub 2017 Jun 29.
10
Sulfated Polysaccharides in the Freshwater Green Macroalga Not Linked to Salinity Adaptation.
Front Plant Sci. 2017 Nov 13;8:1927. doi: 10.3389/fpls.2017.01927. eCollection 2017.

引用本文的文献

3
Influence of Salinity on the Extracellular Enzymatic Activities of Marine Pelagic Fungi.
J Fungi (Basel). 2024 Feb 13;10(2):152. doi: 10.3390/jof10020152.
4
Same but different - pseudo-pectin in the charophytic alga Chlorokybus atmophyticus.
Physiol Plant. 2023 Nov-Dec;175(6):e14079. doi: 10.1111/ppl.14079.
5
Release of cell-free enzymes by marine pelagic fungal strains.
Front Fungal Biol. 2023 Nov 6;4:1209265. doi: 10.3389/ffunb.2023.1209265. eCollection 2023.
6
Arabinogalactan Protein-Like Proteins From Activate Immune Responses and Plant Resistance in an Oilseed Crop.
Front Plant Sci. 2022 May 20;13:893858. doi: 10.3389/fpls.2022.893858. eCollection 2022.
7
Sulfatases: Critical Enzymes for Algal Polysaccharide Processing.
Front Plant Sci. 2022 Apr 28;13:837636. doi: 10.3389/fpls.2022.837636. eCollection 2022.
8
Phylogenomic Analyses of Alismatales Shed Light into Adaptations to Aquatic Environments.
Mol Biol Evol. 2022 May 3;39(5). doi: 10.1093/molbev/msac079.
9
Cell Wall Components and Extensibility Regulate Root Growth in and under Salinity.
Plants (Basel). 2022 Mar 28;11(7):900. doi: 10.3390/plants11070900.
10
Antiviral Activities of Algal-Based Sulfated Polysaccharides.
Molecules. 2022 Feb 9;27(4):1178. doi: 10.3390/molecules27041178.

本文引用的文献

1
Green algae and the origin of land plants.
Am J Bot. 2004 Oct;91(10):1535-56. doi: 10.3732/ajb.91.10.1535.
2
A new specific color reaction of hexuronic acids.
J Biol Chem. 1947 Jan;167(1):189-98.
3
Red microalgal cell-wall polysaccharides: biotechnological aspects.
Curr Opin Biotechnol. 2010 Jun;21(3):358-64. doi: 10.1016/j.copbio.2010.02.008. Epub 2010 Mar 10.
4
Improving salinity tolerance of plants through conventional breeding and genetic engineering: An analytical comparison.
Biotechnol Adv. 2009 Nov-Dec;27(6):744-752. doi: 10.1016/j.biotechadv.2009.05.026. Epub 2009 Jun 10.
5
Mechanisms of salinity tolerance.
Annu Rev Plant Biol. 2008;59:651-81. doi: 10.1146/annurev.arplant.59.032607.092911.
6
Developing salt-tolerant crop plants: challenges and opportunities.
Trends Plant Sci. 2005 Dec;10(12):615-20. doi: 10.1016/j.tplants.2005.10.002. Epub 2005 Nov 8.
8
Recent advances in engineering plant tolerance to abiotic stress: achievements and limitations.
Curr Opin Biotechnol. 2005 Apr;16(2):123-32. doi: 10.1016/j.copbio.2005.02.001.
9
Occurrence of sulfated galactans in marine angiosperms: evolutionary implications.
Glycobiology. 2005 Jan;15(1):11-20. doi: 10.1093/glycob/cwh138. Epub 2004 Aug 18.
10
Improving crop salt tolerance.
J Exp Bot. 2004 Feb;55(396):307-19. doi: 10.1093/jxb/erh003. Epub 2004 Jan 12.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验