Fedotov Sergei, Korabel Nickolay
School of Mathematics, The University of Manchester, Manchester M13 9PL, United Kingdom.
Phys Rev E Stat Nonlin Soft Matter Phys. 2015 Apr;91(4):042112. doi: 10.1103/PhysRevE.91.042112. Epub 2015 Apr 10.
We propose a model of subdiffusion in which an external force is acting on a particle at all times not only at the moment of jump. The implication of this assumption is the dependence of the random trapping time on the force with the dramatic change of particles behavior compared to the standard continuous time random walk model in the long time limit. Constant force leads to the transition from non-ergodic subdiffusion to ergodic diffusive behavior. However, we show this behavior remains anomalous in a sense that the diffusion coefficient depends on the external force and on the anomalous exponent. For quadratic potential we find that the system remains non-ergodic. The anomalous exponent in this case defines not only the speed of convergence but also the stationary distribution which is different from standard Boltzmann equilibrium.
我们提出了一种次扩散模型,其中外力不仅在跳跃时刻,而且在所有时刻都作用于粒子。这一假设的含义是随机捕获时间与力有关,与标准连续时间随机游走模型相比,在长时间极限下粒子行为发生了显著变化。恒定力导致从非遍历次扩散到遍历扩散行为的转变。然而,我们表明,从某种意义上说,这种行为仍然是反常的,因为扩散系数取决于外力和反常指数。对于二次势,我们发现系统仍然是非遍历的。在这种情况下,反常指数不仅定义了收敛速度,还定义了不同于标准玻尔兹曼平衡的稳态分布。