Montefusco Alberto, Consonni Francesco, Beretta Gian Paolo
Politecnico di Milano, Via Ponzio 34/3, Milano, Italy.
Università di Brescia, via Branze 38, Brescia, Italy.
Phys Rev E Stat Nonlin Soft Matter Phys. 2015 Apr;91(4):042138. doi: 10.1103/PhysRevE.91.042138. Epub 2015 Apr 28.
By reformulating the steepest-entropy-ascent (SEA) dynamical model for nonequilibrium thermodynamics in the mathematical language of differential geometry, we compare it with the primitive formulation of the general equation for the nonequilibrium reversible-irreversible coupling (GENERIC) model and discuss the main technical differences of the two approaches. In both dynamical models the description of dissipation is of the "entropy-gradient" type. SEA focuses only on the dissipative, i.e., entropy generating, component of the time evolution, chooses a sub-Riemannian metric tensor as dissipative structure, and uses the local entropy density field as potential. GENERIC emphasizes the coupling between the dissipative and nondissipative components of the time evolution, chooses two compatible degenerate structures (Poisson and degenerate co-Riemannian), and uses the global energy and entropy functionals as potentials. As an illustration, we rewrite the known GENERIC formulation of the Boltzmann equation in terms of the square root of the distribution function adopted by the SEA formulation. We then provide a formal proof that in more general frameworks, whenever all degeneracies in the GENERIC framework are related to conservation laws, the SEA and GENERIC models of the dissipative component of the dynamics are essentially interchangeable, provided of course they assume the same kinematics. As part of the discussion, we note that equipping the dissipative structure of GENERIC with the Leibniz identity makes it automatically SEA on metric leaves.
通过用微分几何的数学语言重新表述非平衡热力学的最陡熵上升(SEA)动力学模型,我们将其与非平衡可逆 - 不可逆耦合(GENERIC)模型的一般方程的原始表述进行比较,并讨论这两种方法的主要技术差异。在这两种动力学模型中,耗散的描述都是“熵梯度”类型。SEA仅关注时间演化的耗散部分,即熵产生部分,选择一个次黎曼度量张量作为耗散结构,并使用局部熵密度场作为势。GENERIC强调时间演化的耗散和非耗散部分之间的耦合,选择两个兼容的退化结构(泊松和退化共黎曼),并使用全局能量和熵泛函作为势。作为一个例证,我们根据SEA表述所采用的分布函数的平方根重写了玻尔兹曼方程的已知GENERIC表述。然后我们提供一个形式证明,即在更一般的框架中,只要GENERIC框架中的所有退化都与守恒定律相关,那么动力学耗散部分的SEA和GENERIC模型在本质上是可互换的,当然前提是它们假设相同的运动学。作为讨论的一部分,我们注意到给GENERIC的耗散结构配备莱布尼茨恒等式会使其在度量叶上自动成为SEA。