Suppr超能文献

作为耗散模型的非平衡热力学的辛叶状结构:应用于度量辛非线性林德布拉德量子主方程。

Symplectic Foliation Structures of Non-Equilibrium Thermodynamics as Dissipation Model: Application to Metriplectic Nonlinear Lindblad Quantum Master Equation.

作者信息

Barbaresco Frédéric

机构信息

Thales Land & Air Systems, 19/21 Avenue Morane Saulnier, 78140 Vélizy-Villacoublay, France.

出版信息

Entropy (Basel). 2022 Nov 9;24(11):1626. doi: 10.3390/e24111626.

Abstract

The idea of a canonical ensemble from Gibbs has been extended by Jean-Marie Souriau for a symplectic manifold where a Lie group has a Hamiltonian action. A novel symplectic thermodynamics and information geometry known as "Lie group thermodynamics" then explains foliation structures of thermodynamics. We then infer a geometric structure for heat equation from this archetypal model, and we have discovered a pure geometric structure of entropy, which characterizes entropy in coadjoint representation as an invariant Casimir function. The coadjoint orbits form the level sets on the entropy. By using the KKS 2-form in the affine case via Souriau's cocycle, the method also enables the Fisher metric from information geometry for Lie groups. The fact that transverse dynamics to these symplectic leaves is dissipative, whilst dynamics along these symplectic leaves characterize non-dissipative phenomenon, can be used to interpret this Lie group thermodynamics within the context of an open system out of thermodynamics equilibrium. In the following section, we will discuss the dissipative symplectic model of heat and information through the Poisson transverse structure to the symplectic leaf of coadjoint orbits, which is based on the metriplectic bracket, which guarantees conservation of energy and non-decrease of entropy. Baptiste Coquinot recently developed a new foundation theory for dissipative brackets by taking a broad perspective from non-equilibrium thermodynamics. He did this by first considering more natural variables for building the bracket used in metriplectic flow and then by presenting a methodical approach to the development of the theory. By deriving a generic dissipative bracket from fundamental thermodynamic first principles, Baptiste Coquinot demonstrates that brackets for the dissipative part are entirely natural, just as Poisson brackets for the non-dissipative part are canonical for Hamiltonian dynamics. We shall investigate how the theory of dissipative brackets introduced by Paul Dirac for limited Hamiltonian systems relates to transverse structure. We shall investigate an alternative method to the metriplectic method based on Michel Saint Germain's PhD research on the transverse Poisson structure. We will examine an alternative method to the metriplectic method based on the transverse Poisson structure, which Michel Saint-Germain studied for his PhD and was motivated by the key works of Fokko du Cloux. In continuation of Saint-Germain's works, Hervé Sabourin highlights the, for transverse Poisson structures, polynomial nature to nilpotent adjoint orbits and demonstrated that the Casimir functions of the transverse Poisson structure that result from restriction to the Lie-Poisson structure transverse slice are Casimir functions independent of the transverse Poisson structure. He also demonstrated that, on the transverse slice, two polynomial Poisson structures to the symplectic leaf appear that have Casimir functions. The dissipative equation introduced by Lindblad, from the Hamiltonian Liouville equation operating on the quantum density matrix, will be applied to illustrate these previous models. For the Lindblad operator, the dissipative component has been described as the relative entropy gradient and the maximum entropy principle by Öttinger. It has been observed then that the Lindblad equation is a linear approximation of the metriplectic equation.

摘要

吉布斯提出的正则系综概念已被让 - 玛丽·苏里奥扩展到一个辛流形,其中李群具有哈密顿作用。一种名为“李群热力学”的新型辛热力学和信息几何随后解释了热力学的叶状结构。然后我们从这个原型模型推导出热方程的几何结构,并且我们发现了熵的纯几何结构,它在余伴随表示中将熵表征为一个不变的卡西米尔函数。余伴随轨道构成熵的水平集。通过在仿射情形下经由苏里奥的上同调使用KKS 2 - 形式,该方法还能得到李群信息几何中的费希尔度量。这些辛叶的横向动力学是耗散的,而沿着这些辛叶的动力学表征非耗散现象,这一事实可用于在热力学平衡之外的开放系统背景下解释这种李群热力学。在接下来的部分,我们将通过泊松横向结构来讨论热和信息的耗散辛模型,该结构基于保能量和熵不减的度量辛括号。巴普蒂斯特·科基诺最近从非平衡热力学的广泛视角为耗散括号发展了一种新的基础理论。他首先考虑用于构建度量辛流中使用的括号的更自然变量,然后提出一种系统的理论发展方法。通过从基本热力学第一原理推导一个通用的耗散括号,巴普蒂斯特·科基诺证明了耗散部分的括号是完全自然的,就如同哈密顿动力学中非耗散部分的泊松括号是正则的一样。我们将研究保罗·狄拉克为有限哈密顿系统引入的耗散括号理论与横向结构的关系。我们将研究一种基于米歇尔·圣日耳曼关于横向泊松结构的博士研究的替代度量辛方法。我们将研究一种基于横向泊松结构的替代度量辛方法,这是米歇尔·圣日耳曼为其博士研究的内容,其灵感来源于福科·杜克洛的关键著作。在圣日耳曼工作的延续中,埃尔韦·萨布兰强调了对于横向泊松结构,幂零伴随轨道的多项式性质,并证明了限制到李 - 泊松结构横向切片所得到的横向泊松结构的卡西米尔函数是与横向泊松结构无关的卡西米尔函数。他还证明了在横向切片上,出现了两个到辛叶的多项式泊松结构,它们具有卡西米尔函数。由林德布拉德从作用于量子密度矩阵的哈密顿刘维尔方程引入的耗散方程,将被应用于说明这些先前的模型。对于林德布拉德算子,耗散分量已被奥廷格描述为相对熵梯度和最大熵原理。然后人们观察到林德布拉德方程是度量辛方程的线性近似。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9f02/9689603/f1db740312ac/entropy-24-01626-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验