Suppr超能文献

向列型液晶中20纳米纳米胶体的表面电荷与相互作用

Surface charge and interactions of 20-nm nanocolloids in a nematic liquid crystal.

作者信息

Ryzhkova A V, Škarabot M, Muševič I

机构信息

Condensed Matter Physics Department, Jožef Stefan Institute, Jamova 39, SI-1000 Ljubljana, Slovenia.

Electrical Engineering Technologies Laboratory, Department of Physics, South Ural State University, Lenina ave.76, 454080 Chelyabinsk, Russia.

出版信息

Phys Rev E Stat Nonlin Soft Matter Phys. 2015 Apr;91(4):042505. doi: 10.1103/PhysRevE.91.042505. Epub 2015 Apr 17.

Abstract

We studied real-time motion of individual 20-nm silica nanoparticles in a thin layer of a nematic liquid crystal using a dark-field optical videomicroscopy. By tracking the positions of individual nanoparticles we observed that particle pair interactions are not only mediated by strong thermal fluctuations of the nematic liquid crystal, but also with a repulsive force of electric origin. We determined the total electric charge of silanated silica particles in the nematic liquid crystal 5CB by observing the electric-force-driven drift. Surprisingly, the surface electric charge density depends on colloidal size and is ∼4.5×10(-3)C/m(2) for 20-nm nanocolloids, and two orders of magnitude lower, i.e., ∼2.3×10(-5)C/m(2), for 1-μm colloids. We conclude that electrostatic repulsion between like-charged particles prevents the formation of permanent colloidal assemblies of nanometer size. We also observed strong attraction of 20-nm silica nanoparticles to confining polyimide surfaces and larger clusters, which gradually results in complete expulsion of nanoparticles from the nematic liquid crystal to the surfaces of the confining cell.

摘要

我们使用暗场光学视频显微镜研究了向列型液晶薄层中单个20纳米二氧化硅纳米颗粒的实时运动。通过跟踪单个纳米颗粒的位置,我们观察到颗粒对相互作用不仅由向列型液晶的强烈热涨落介导,还受到电起源的排斥力影响。我们通过观察电力驱动的漂移来确定向列型液晶5CB中硅烷化二氧化硅颗粒的总电荷。令人惊讶的是,表面电荷密度取决于胶体尺寸,对于20纳米的纳米胶体约为4.5×10⁻³ C/m²,而对于1微米的胶体则低两个数量级,即约为2.3×10⁻⁵ C/m²。我们得出结论,同性带电颗粒之间的静电排斥阻止了纳米尺寸永久胶体聚集体的形成。我们还观察到20纳米二氧化硅纳米颗粒对限制聚酰亚胺表面和较大聚集体有强烈吸引力,这逐渐导致纳米颗粒从向列型液晶完全排斥到限制单元的表面。

相似文献

1
Surface charge and interactions of 20-nm nanocolloids in a nematic liquid crystal.
Phys Rev E Stat Nonlin Soft Matter Phys. 2015 Apr;91(4):042505. doi: 10.1103/PhysRevE.91.042505. Epub 2015 Apr 17.
2
Light-driven oscillations of entangled nematic colloidal chains.
Eur Phys J E Soft Matter. 2010 Dec;33(4):291-6. doi: 10.1140/epje/i2010-10671-6. Epub 2010 Nov 7.
3
Generalized Onsager theory for strongly anisometric patchy colloids.
J Chem Phys. 2014 Jan 14;140(2):024901. doi: 10.1063/1.4851217.
4
Phase separations in liquid crystal-colloid mixtures.
J Chem Phys. 2008 Jan 28;128(4):044907. doi: 10.1063/1.2823737.
5
Anisotropic laser trapping in nematic colloidal dispersion.
Eur Phys J E Soft Matter. 2006 Jun;20(2):215-9. doi: 10.1140/epje/i2006-10015-3. Epub 2006 Jun 16.
7
Surface-induced structures in nematic liquid crystal colloids.
Phys Rev E Stat Nonlin Soft Matter Phys. 2014 Aug;90(2):020502. doi: 10.1103/PhysRevE.90.020502. Epub 2014 Aug 7.
8
Theory of elastic interaction of colloidal particles in nematic liquid crystals near one wall and in the nematic cell.
Phys Rev E Stat Nonlin Soft Matter Phys. 2011 Jul;84(1 Pt 1):011707. doi: 10.1103/PhysRevE.84.011707. Epub 2011 Jul 25.
9
Gravitational compression dynamics of charged colloidal crystals.
J Colloid Interface Sci. 2012 Mar 15;370(1):39-45. doi: 10.1016/j.jcis.2011.12.071. Epub 2012 Jan 8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验