Nasraoui S, Salhi A, Lehner T
Département de Physique, Faculté des Sciences de Tunis, 1060 Tunis, Tunisia.
LUTH, UMR 8102 CNRS, Observatoire de Paris-Meudon, 5 place de Janssen, F-92195 Meudon, France.
Phys Rev E Stat Nonlin Soft Matter Phys. 2015 Apr;91(4):043006. doi: 10.1103/PhysRevE.91.043006. Epub 2015 Apr 9.
We consider horizontal linear shear flow (shear rate denoted by Λ) under vertical uniform rotation (ambient rotation rate denoted by Ω(0)) and vertical stratification (buoyancy frequency denoted by N) in unbounded domain. We show that, under a primary vertical velocity perturbation and a radial density perturbation consisting of a one-dimensional standing wave with frequency N and amplitude proportional to w(0)sin(ɛNx/w(0))≈ɛNx(≪1), where x denotes the radial coordinate and ɛ a small parameter, a parametric instability can develop in the flow, provided N(2)>8Ω(0)(2Ω(0)-Λ). For astrophysical accretion flows and under the shearing sheet approximation, this implies N(2)>8Ω(0)(2)(2-q), where q=Λ/Ω(0) is the local shear gradient. In the case of a stratified constant angular momentum disk, q=2, there is a parametric instability with the maximal growth rate (σ(m)/ɛ)=3√[3]/16 for any positive value of the buoyancy frequency N. In contrast, for a stratified Keplerian disk, q=1.5, the parametric instability appears only for N>2Ω(0) with a maximal growth rate that depends on the ratio Ω(0)/N and approaches (3√[3]/16)ɛ for large values of N.
我们考虑在无界域中的垂直均匀旋转(环境旋转速率用Ω(0)表示)和垂直分层(浮力频率用N表示)下的水平线性剪切流(剪切率用Λ表示)。我们表明,在由频率为N且振幅与w(0)sin(ɛNx/w(0))≈ɛNx(≪1)成正比的一维驻波组成的一次垂直速度扰动和径向密度扰动下,其中x表示径向坐标且ɛ为小参数,只要N(2)>8Ω(0)(2Ω(0)-Λ),流动中就会出现参数不稳定性。对于天体物理吸积流并在剪切薄板近似下,这意味着N(2)>8Ω(0)(2)(2 - q),其中q = Λ/Ω(0)是局部剪切梯度。在分层常角动量盘的情况下,q = 2,对于任何正的浮力频率N,存在最大增长率为(σ(m)/ɛ)=3√[3]/16的参数不稳定性。相比之下,对于分层开普勒盘,q = 1.5,参数不稳定性仅在N>2Ω(0)时出现,其最大增长率取决于Ω(0)/N的比值,并且对于大的N值趋近于(3√[3]/16)ɛ。