IEEE Trans Image Process. 2015 Sep;24(9):2851-63. doi: 10.1109/TIP.2015.2432714.
We consider the problem of depth estimation on digital stereo mammograms. Being able to elucidate 3D information from stereo mammograms is an important precursor to conducting 3D digital analysis of data from this promising new modality. The problem is generally much harder than the classic stereo matching problem on visible light images of the natural world, since nearly all of the 3D structural information of interest exists as complex network of multilayered, heavily occluded curvilinear structures. Toward addressing this difficult problem, we formulate a new stereo model that minimizes a global energy functional to densely estimate disparity on stereo mammogram images, by introducing a new singularity index as a constraint to obtain better estimates of disparity along critical curvilinear structures. Curvilinear structures, such as vasculature and spicules, are particularly salient structures in the breast, and being able to accurately position them in 3D is a valuable goal. Experiments on synthetic images with known ground truth and on real stereo mammograms highlight the advantages of the proposed stereo model over the canonical stereo model.
我们研究了数字立体乳腺 X 光片的深度估计问题。从立体乳腺 X 光片中阐明 3D 信息是对这种有前途的新模态数据进行 3D 数字分析的重要前提。由于几乎所有感兴趣的 3D 结构信息都存在于复杂的多层、严重遮挡的曲线结构网络中,因此该问题通常比自然界可见光图像上的经典立体匹配问题困难得多。为了解决这个难题,我们提出了一种新的立体模型,通过引入新的奇点指数作为约束条件,最小化全局能量函数,以在立体乳腺 X 光图像上密集估计视差,从而获得沿关键曲线结构的更好的视差估计。曲线结构,如血管和骨刺,是乳房中特别明显的结构,能够准确地将它们定位在 3D 中是一个有价值的目标。在具有已知地面真实值的合成图像和真实立体乳腺 X 光片上的实验突出了所提出的立体模型相对于规范立体模型的优势。