IEEE Trans Image Process. 2015 Oct;24(10):3071-85. doi: 10.1109/TIP.2015.2432716. Epub 2015 May 13.
Blind motion deblurring from a single image is a highly under-constrained problem with many degenerate solutions. A good approximation of the intrinsic image can, therefore, only be obtained with the help of prior information in the form of (often nonconvex) regularization terms for both the intrinsic image and the kernel. While the best choice of image priors is still a topic of ongoing investigation, this research is made more complicated by the fact that historically each new prior requires the development of a custom optimization method. In this paper, we develop a stochastic optimization method for blind deconvolution. Since this stochastic solver does not require the explicit computation of the gradient of the objective function and uses only efficient local evaluation of the objective, new priors can be implemented and tested very quickly. We demonstrate that this framework, in combination with different image priors produces results with Peak Signal-to-Noise Ratio (PSNR) values that match or exceed the results obtained by much more complex state-of-the-art blind motion deblurring algorithms.
从单张图像进行盲运动去模糊是一个高度欠约束的问题,存在许多退化解。因此,只有借助于内在图像和核的正则化项(通常是非凸的)形式的先验信息,才能得到内在图像的良好近似。虽然图像先验的最佳选择仍然是一个正在进行的研究课题,但由于历史上每个新的先验都需要开发自定义的优化方法,这使得研究变得更加复杂。在本文中,我们为盲反卷积开发了一种随机优化方法。由于这种随机求解器不需要显式计算目标函数的梯度,并且只使用目标的有效局部评估,因此可以非常快速地实现和测试新的先验。我们证明,这种框架与不同的图像先验相结合,可以产生与通过更复杂的最新盲运动去模糊算法获得的结果相匹配或超过的峰值信噪比(PSNR)值。