Suppr超能文献

RidA/YjgF/YER057c/UK114(Rid)蛋白家族多种代谢功能的基因组及实验证据。

Genomic and experimental evidence for multiple metabolic functions in the RidA/YjgF/YER057c/UK114 (Rid) protein family.

作者信息

Niehaus Thomas D, Gerdes Svetlana, Hodge-Hanson Kelsey, Zhukov Aleksey, Cooper Arthur J L, ElBadawi-Sidhu Mona, Fiehn Oliver, Downs Diana M, Hanson Andrew D

机构信息

Horticultural Sciences Department, University of Florida, Gainesville, FL, 32611, USA.

Mathematics and Computer Science Division, Argonne National Laboratory, Argonne, IL, 60439, USA.

出版信息

BMC Genomics. 2015 May 15;16(1):382. doi: 10.1186/s12864-015-1584-3.

Abstract

BACKGROUND

It is now recognized that enzymatic or chemical side-reactions can convert normal metabolites to useless or toxic ones and that a suite of enzymes exists to mitigate such metabolite damage. Examples are the reactive imine/enamine intermediates produced by threonine dehydratase, which damage the pyridoxal 5'-phosphate cofactor of various enzymes causing inactivation. This damage is pre-empted by RidA proteins, which hydrolyze the imines before they do harm. RidA proteins belong to the YjgF/YER057c/UK114 family (here renamed the Rid family). Most other members of this diverse and ubiquitous family lack defined functions.

RESULTS

Phylogenetic analysis divided the Rid family into a widely distributed, apparently archetypal RidA subfamily and seven other subfamilies (Rid1 to Rid7) that are largely confined to bacteria and often co-occur in the same organism with RidA and each other. The Rid1 to Rid3 subfamilies, but not the Rid4 to Rid7 subfamilies, have a conserved arginine residue that, in RidA proteins, is essential for imine-hydrolyzing activity. Analysis of the chromosomal context of bacterial RidA genes revealed clustering with genes for threonine dehydratase and other pyridoxal 5'-phosphate-dependent enzymes, which fits with the known RidA imine hydrolase activity. Clustering was also evident between Rid family genes and genes specifying FAD-dependent amine oxidases or enzymes of carbamoyl phosphate metabolism. Biochemical assays showed that Salmonella enterica RidA and Rid2, but not Rid7, can hydrolyze imines generated by amino acid oxidase. Genetic tests indicated that carbamoyl phosphate overproduction is toxic to S. enterica cells lacking RidA, and metabolomic profiling of Rid knockout strains showed ten-fold accumulation of the carbamoyl phosphate-related metabolite dihydroorotate.

CONCLUSIONS

Like the archetypal RidA subfamily, the Rid2, and probably the Rid1 and Rid3 subfamilies, have imine-hydrolyzing activity and can pre-empt damage from imines formed by amine oxidases as well as by pyridoxal 5'-phosphate enzymes. The RidA subfamily has an additional damage pre-emption role in carbamoyl phosphate metabolism that has yet to be biochemically defined. Finally, the Rid4 to Rid7 subfamilies appear not to hydrolyze imines and thus remain mysterious.

摘要

背景

现在人们认识到,酶促或化学反应副反应可将正常代谢物转化为无用或有毒的物质,并且存在一系列酶来减轻此类代谢物损伤。例如,苏氨酸脱水酶产生的反应性亚胺/烯胺中间体,会破坏各种酶的磷酸吡哆醛辅因子,导致酶失活。RidA蛋白可在这种损伤发生之前发挥作用,它能在亚胺造成危害之前将其水解。RidA蛋白属于YjgF/YER057c/UK114家族(此处重新命名为Rid家族)。这个多样且广泛存在的家族的大多数其他成员缺乏明确的功能。

结果

系统发育分析将Rid家族分为一个广泛分布、显然是原型的RidA亚家族和其他七个亚家族(Rid1至Rid7),后者主要局限于细菌,并且常常与RidA以及彼此共同存在于同一生物体中。Rid1至Rid3亚家族,但不包括Rid4至Rid7亚家族,有一个保守的精氨酸残基,在RidA蛋白中,该残基对于亚胺水解活性至关重要。对细菌RidA基因的染色体背景分析显示,它与苏氨酸脱水酶和其他磷酸吡哆醛依赖性酶的基因成簇,这与已知的RidA亚胺水解酶活性相符。Rid家族基因与指定FAD依赖性胺氧化酶或氨基甲酰磷酸代谢酶的基因之间也存在明显的成簇现象。生化分析表明,肠炎沙门氏菌的RidA和Rid2,但不是Rid7,能够水解氨基酸氧化酶产生的亚胺。基因测试表明,氨基甲酰磷酸过量产生对缺乏RidA的肠炎沙门氏菌细胞有毒,对Rid基因敲除菌株的代谢组分析显示,与氨基甲酰磷酸相关的代谢物二氢乳清酸积累了十倍。

结论

与原型RidA亚家族一样,Rid2以及可能的Rid1和Rid3亚家族具有亚胺水解活性,并且可以预防胺氧化酶以及磷酸吡哆醛酶形成的亚胺造成的损伤。RidA亚家族在氨基甲酰磷酸代谢中还有一个尚未在生化方面明确的额外预防损伤作用。最后,Rid4至Rid7亚家族似乎不能水解亚胺,因此仍然神秘。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cc31/4433059/15856784ff81/12864_2015_1584_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验