Suppr超能文献

基于数据驱动的红外光谱信号解析方法,用于探究植物中有机和无机化合物的宏观及微观空间分布。

Data-driven signal-resolving approaches of infrared spectra to explore the macroscopic and microscopic spatial distribution of organic and inorganic compounds in plant.

作者信息

Chen Jian-bo, Sun Su-qin, Zhou Qun

机构信息

Department of Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Tsinghua University, Beijing, 100084, China.

出版信息

Anal Bioanal Chem. 2015 Jul;407(19):5695-706. doi: 10.1007/s00216-015-8746-7. Epub 2015 May 15.

Abstract

The nondestructive and label-free infrared (IR) spectroscopy is a direct tool to characterize the spatial distribution of organic and inorganic compounds in plant. Since plant samples are usually complex mixtures, signal-resolving methods are necessary to find the spectral features of compounds of interest in the signal-overlapped IR spectra. In this research, two approaches using existing data-driven signal-resolving methods are proposed to interpret the IR spectra of plant samples. If the number of spectra is small, "tri-step identification" can enhance the spectral resolution to separate and identify the overlapped bands. First, the envelope bands of the original spectrum are interpreted according to the spectra-structure correlations. Then the spectrum is differentiated to resolve the underlying peaks in each envelope band. Finally, two-dimensional correlation spectroscopy is used to enhance the spectral resolution further. For a large number of spectra, "tri-step decomposition" can resolve the spectra by multivariate methods to obtain the structural and semi-quantitative information about the chemical components. Principal component analysis is used first to explore the existing signal types without any prior knowledge. Then the spectra are decomposed by self-modeling curve resolution methods to estimate the spectra and contents of significant chemical components. At last, targeted methods such as partial least squares target can explore the content profiles of specific components sensitively. As an example, the macroscopic and microscopic distribution of eugenol and calcium oxalate in the bud of clove is studied.

摘要

非破坏性且无需标记的红外(IR)光谱法是表征植物中有机和无机化合物空间分布的直接工具。由于植物样品通常是复杂的混合物,因此需要采用信号解析方法来在信号重叠的红外光谱中找到感兴趣化合物的光谱特征。在本研究中,提出了两种使用现有数据驱动信号解析方法的途径来解释植物样品的红外光谱。如果光谱数量较少,“三步识别”可提高光谱分辨率以分离和识别重叠谱带。首先,根据光谱 - 结构相关性解释原始光谱的包络谱带。然后对光谱进行微分以解析每个包络谱带中的潜在峰。最后,使用二维相关光谱法进一步提高光谱分辨率。对于大量光谱,“三步分解”可通过多变量方法解析光谱,以获得有关化学成分的结构和半定量信息。首先使用主成分分析在没有任何先验知识的情况下探索现有的信号类型。然后通过自建模曲线分辨方法分解光谱,以估计重要化学成分的光谱和含量。最后,诸如偏最小二乘目标等靶向方法可灵敏地探索特定成分的含量分布。作为一个例子,研究了丁香芽中丁香酚和草酸钙的宏观和微观分布。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验