Nadiri Amal, Jundi Malek, El Akoum Souhad, Hassan Ghada S, Yacoub Daniel, Mourad Walid
Laboratoire d'Immunologie Cellulaire et Moléculaire, Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CR-CHUM), 900 rue Saint-Denis, Tour Viger, Montréal, Québec H2X 0A9, Canada.
Laboratoire d'Immunologie Cellulaire et Moléculaire, Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CR-CHUM), 900 rue Saint-Denis, Tour Viger, Montréal, Québec H2X 0A9, Canada
Int Immunol. 2015 Nov;27(11):555-65. doi: 10.1093/intimm/dxv030. Epub 2015 May 14.
CD40, a member of the tumor necrosis factor receptor superfamily, plays a key role in both adaptive and innate immunity. Engagement of CD40 with its natural trimeric ligand or with cross-linked antibodies results in disulfide-linked CD40 (dl-CD40) homodimer formation, a process mediated by the cysteine-238 residues of the cytoplasmic tail of CD40. The present study was designed to elucidate the biological relevance of cysteine-238-mediated dl-CD40 homodimers to the expression of CD23 on B cells and to investigate its possible involvement in the innate response. Our results indicate that cysteine-238-mediated dl-CD40 homodimerization is required for CD40-induced activation of PI3-kinase/Akt signaling and the subsequent CD23 expression, as inhibition of dl-CD40 homodimer formation through a point mutation-approach specifically impairs these responses. Interestingly, cysteine-238-mediated dl-CD40 homodimers are also shown to play a crucial role in Toll-like receptor 4-induced CD23 expression, further validating the importance of this system in bridging innate and adaptive immune responses. This process also necessitates the activation of the PI3-kinase/Akt cascade. Thus, our results highlight new roles for CD40 and cysteine-238-mediated CD40 homodimers in cell biology and identify a potential new target for therapeutic strategies against CD40-associated chronic inflammatory diseases.