From Department of Pharmacology, Xi'an Jiaotong University Health Science Center, Xi'an, People's Republic of China (X.H., X-y.B., X-z.L., M.Z., X-j.Y., L.S., M.X., W-j.Z.); and Department of Physiology, University of Maryland School of Medicine, Baltimore (W.G.W.).
Arterioscler Thromb Vasc Biol. 2015 Jul;35(7):1623-34. doi: 10.1161/ATVBAHA.115.305469. Epub 2015 May 14.
We explored the role of endoplasmic reticulum (ER)-mitochondria Ca(2+) cross talk involving voltage-dependent anion channel-1 (VDAC1)/glucose-regulated protein 75/inositol 1,4,5-trisphosphate receptor 1 complex and mitofusin 2 in endothelial cells during hypoxia/reoxygenation (H/R), and investigated the protective effects of acetylcholine.
Acetylcholine treatment during reoxygenation prevented intracellular and mitochondrial Ca(2+) increases and alleviated ER Ca(2+) depletion during H/R in human umbilical vein endothelial cells. Consequently, acetylcholine enhanced mitochondrial membrane potential and inhibited proapoptotic cascades, thereby reducing cell death and preserving endothelial ultrastructure. This effect was likely mediated by the type-3 muscarinic acetylcholine receptor and the phosphatidylinositol 3-kinase/Akt pathway. In addition, interactions among members of the VDAC1/glucose-regulated protein 75/inositol 1,4,5-trisphosphate receptor 1 complex were increased after H/R and were associated with mitochondrial Ca(2+) overload and cell death. Inhibition of the partner of the Ca(2+) channeling complex (VDAC1 siRNA) or a reduction in ER-mitochondria tethering (mitofusin 2 siRNA) prevented the increased protein interaction within the complex and reduced mitochondrial Ca(2+) accumulation and subsequent endothelial cell death after H/R. Intriguingly, acetylcholine could modulate ER-mitochondria Ca(2+) cross talk by inhibiting the VDAC1/glucose-regulated protein 75/inositol 1,4,5-trisphosphate receptor 1 complex and mitofusin 2 expression. Phosphatidylinositol 3-kinase siRNA diminished acetylcholine-mediated inhibition of mitochondrial Ca(2+) overload and VDAC1/glucose-regulated protein 75/inositol 1,4,5-trisphosphate receptor 1 complex formation induced by H/R.
Our data suggest that ER-mitochondria interplay plays an important role in reperfusion injury in the endothelium and may be a novel molecular target for endothelial protection. Acetylcholine attenuates both intracellular and mitochondrial Ca(2+) overload and protects endothelial cells from H/R injury, presumably by disrupting the ER-mitochondria interaction.
我们探讨了内质网(ER)-线粒体 Ca(2+)信号转导中涉及电压依赖性阴离子通道 1(VDAC1)/葡萄糖调节蛋白 75/肌醇 1,4,5-三磷酸受体 1 复合物和线粒体融合蛋白 2 在缺氧/复氧(H/R)期间在内皮细胞中的作用,并研究了乙酰胆碱的保护作用。
复氧期间乙酰胆碱的处理可防止人脐静脉内皮细胞在 H/R 期间细胞内和线粒体 Ca(2+)增加,并减轻 ER Ca(2+)耗竭。因此,乙酰胆碱增强了线粒体膜电位并抑制了促凋亡级联反应,从而减少了细胞死亡并维持了内皮细胞超微结构。这种作用可能是通过 3 型毒蕈碱乙酰胆碱受体和磷脂酰肌醇 3-激酶/Akt 途径介导的。此外,H/R 后 VDAC1/葡萄糖调节蛋白 75/肌醇 1,4,5-三磷酸受体 1 复合物成员之间的相互作用增加,并与线粒体 Ca(2+)超载和细胞死亡相关。抑制 Ca(2+)通道复合物的伴侣(VDAC1 siRNA)或减少 ER-线粒体连接(线粒体融合蛋白 2 siRNA)可防止复合物内增加的蛋白相互作用,并减少 H/R 后线粒体 Ca(2+)积累和随后的内皮细胞死亡。有趣的是,乙酰胆碱可通过抑制 VDAC1/葡萄糖调节蛋白 75/肌醇 1,4,5-三磷酸受体 1 复合物和线粒体融合蛋白 2 的表达来调节 ER-线粒体 Ca(2+)信号转导。磷脂酰肌醇 3-激酶 siRNA 减弱了乙酰胆碱介导的 H/R 诱导的线粒体 Ca(2+)超载和 VDAC1/葡萄糖调节蛋白 75/肌醇 1,4,5-三磷酸受体 1 复合物形成的抑制作用。
我们的数据表明,内质网-线粒体相互作用在血管内皮再灌注损伤中起重要作用,可能是内皮保护的新的分子靶点。乙酰胆碱可减轻细胞内和线粒体 Ca(2+)超载,并保护内皮细胞免受 H/R 损伤,可能是通过破坏 ER-线粒体相互作用来实现的。