Cardoso Fernanda C, Dekan Zoltan, Rosengren K Johan, Erickson Andelain, Vetter Irina, Deuis Jennifer R, Herzig Volker, Alewood Paul F, King Glenn F, Lewis Richard J
Institute for Molecular Bioscience (F.C.C., Z.D., I.V., J.R.D., V.H., P.F.A., G.F.K., R.J.L.), School of Biomedical Sciences (K.J.R.), and School of Chemistry and Molecular Biosciences (A.E.), The University of Queensland, Brisbane, Queensland, Australia.
Institute for Molecular Bioscience (F.C.C., Z.D., I.V., J.R.D., V.H., P.F.A., G.F.K., R.J.L.), School of Biomedical Sciences (K.J.R.), and School of Chemistry and Molecular Biosciences (A.E.), The University of Queensland, Brisbane, Queensland, Australia
Mol Pharmacol. 2015 Aug;88(2):291-303. doi: 10.1124/mol.115.098178. Epub 2015 May 15.
Spider venoms are a rich source of ion channel modulators with therapeutic potential. Given the analgesic potential of subtype-selective inhibitors of voltage-gated sodium (NaV) channels, we screened spider venoms for inhibitors of human NaV1.7 (hNaV1.7) using a high-throughput fluorescent assay. Here, we describe the discovery of a novel NaV1.7 inhibitor, μ-TRTX-Tp1a (Tp1a), isolated from the venom of the Peruvian green-velvet tarantula Thrixopelma pruriens. Recombinant and synthetic forms of this 33-residue peptide preferentially inhibited hNaV1.7 > hNaV1.6 > hNaV1.2 > hNaV1.1 > hNaV1.3 channels in fluorescent assays. NaV1.7 inhibition was diminished (IC50 11.5 nM) and the association rate decreased for the C-terminal acid form of Tp1a compared with the native amidated form (IC50 2.1 nM), suggesting that the peptide C terminus contributes to its interaction with hNaV1.7. Tp1a had no effect on human voltage-gated calcium channels or nicotinic acetylcholine receptors at 5 μM. Unlike most spider toxins that modulate NaV channels, Tp1a inhibited hNaV1.7 without significantly altering the voltage dependence of activation or inactivation. Tp1a proved to be analgesic by reversing spontaneous pain induced in mice by intraplantar injection in OD1, a scorpion toxin that potentiates hNaV1.7. The structure of Tp1a as determined using NMR spectroscopy revealed a classic inhibitor cystine knot (ICK) motif. The molecular surface of Tp1a presents a hydrophobic patch surrounded by positively charged residues, with subtle differences from other ICK spider toxins that might contribute to its different pharmacological profile. Tp1a may help guide the development of more selective and potent hNaV1.7 inhibitors for treatment of chronic pain.
蜘蛛毒液是具有治疗潜力的离子通道调节剂的丰富来源。鉴于电压门控钠(NaV)通道亚型选择性抑制剂的镇痛潜力,我们使用高通量荧光测定法筛选了蜘蛛毒液中人类NaV1.7(hNaV1.7)的抑制剂。在此,我们描述了一种从秘鲁绿绒狼蛛Thrixopelma pruriens毒液中分离出的新型NaV1.7抑制剂μ-TRTX-Tp1a(Tp1a)的发现。在荧光测定中,这种33个残基的肽的重组形式和合成形式优先抑制hNaV1.7 > hNaV1.6 > hNaV1.2 > hNaV1.1 > hNaV1.3通道。与天然酰胺化形式(IC50 2.1 nM)相比,Tp1a的C末端酸形式对NaV1.7的抑制作用减弱(IC50 11.5 nM)且结合速率降低,这表明肽的C末端有助于其与hNaV1.7的相互作用。在5 μM浓度下,Tp1a对人类电压门控钙通道或烟碱型乙酰胆碱受体没有影响。与大多数调节NaV通道的蜘蛛毒素不同,Tp1a抑制hNaV1.7时不会显著改变激活或失活的电压依赖性。通过逆转OD1(一种增强hNaV1.7的蝎毒素)足底注射诱导的小鼠自发性疼痛,Tp1a被证明具有镇痛作用。使用核磁共振光谱确定的Tp1a结构揭示了一个经典的抑制剂胱氨酸结(ICK)基序。Tp1a的分子表面呈现出一个被带正电荷的残基包围的疏水区域,与其他ICK蜘蛛毒素存在细微差异,这可能导致其不同的药理学特征。Tp1a可能有助于指导开发更具选择性和强效的hNaV1.7抑制剂用于治疗慢性疼痛。