Ralovich Kristóf, Itu Lucian, Vitanovski Dime, Sharma Puneet, Ionasec Razvan, Mihalef Viorel, Krawtschuk Waldemar, Zheng Yefeng, Everett Allen, Pongiglione Giacomo, Leonardi Benedetta, Ringel Richard, Navab Nassir, Heimann Tobias, Comaniciu Dorin
Siemens AG, Imaging and Computer Vision, San-Carlos-Strasse 7, 91058 Erlangen, Germany and Technical University of Munich, Boltzmannstrasse 3, Munich 85748, Germany.
Siemens S.r.l., Imaging and Computer Vision, B-dul Eroilor nr. 5, 500007 Brasov, Romania and Transilvania University of Brasov, B-dul Eroilor nr. 29, 500036 Brasov, Romania.
Med Phys. 2015 May;42(5):2143-56. doi: 10.1118/1.4914856.
Coarctation of the aorta (CoA) is a congenital heart disease characterized by an abnormal narrowing of the proximal descending aorta. Severity of this pathology is quantified by the blood pressure drop (△P) across the stenotic coarctation lesion. In order to evaluate the physiological significance of the preoperative coarctation and to assess the postoperative results, the hemodynamic analysis is routinely performed by measuring the △P across the coarctation site via invasive cardiac catheterization. The focus of this work is to present an alternative, noninvasive measurement of blood pressure drop △P through the introduction of a fast, image-based workflow for personalized computational modeling of the CoA hemodynamics.
The authors propose an end-to-end system comprised of shape and computational models, their personalization setup using MR imaging, and a fast, noninvasive method based on computational fluid dynamics (CFD) to estimate the pre- and postoperative hemodynamics for coarctation patients. A virtual treatment method is investigated to assess the predictive power of our approach.
Automatic thoracic aorta segmentation was applied on a population of 212 3D MR volumes, with mean symmetric point-to-mesh error of 3.00 ± 1.58 mm and average computation time of 8 s. Through quantitative evaluation of 6 CoA patients, good agreement between computed blood pressure drop and catheter measurements is shown: average differences are 2.38 ± 0.82 mm Hg (pre-), 1.10 ± 0.63 mm Hg (postoperative), and 4.99 ± 3.00 mm Hg (virtual stenting), respectively.
The complete workflow is realized in a fast, mostly-automated system that is integrable in the clinical setting. To the best of our knowledge, this is the first time that three different settings (preoperative--severity assessment, poststenting--follow-up, and virtual stenting--treatment outcome prediction) of CoA are investigated on multiple subjects. We believe that in future-given wider clinical validation-our noninvasive in-silico method could replace invasive pressure catheterization for CoA.
主动脉缩窄(CoA)是一种先天性心脏病,其特征为近端降主动脉异常狭窄。该病变的严重程度通过狭窄性缩窄病变处的血压降(△P)来量化。为了评估术前缩窄的生理意义并评估术后结果,通常通过有创心脏导管插入术测量缩窄部位的△P来进行血流动力学分析。本研究的重点是通过引入一种快速的、基于图像的工作流程,用于CoA血流动力学的个性化计算建模,从而提供一种替代的、无创的血压降△P测量方法。
作者提出了一个端到端系统,该系统由形状和计算模型、使用磁共振成像的个性化设置以及一种基于计算流体动力学(CFD)的快速无创方法组成,用于估计CoA患者术前和术后的血流动力学。研究了一种虚拟治疗方法来评估我们方法的预测能力。
对212个三维磁共振容积进行了自动胸主动脉分割,平均对称点到网格误差为3.00±1.58毫米,平均计算时间为8秒。通过对6例CoA患者的定量评估,计算得到的血压降与导管测量结果显示出良好的一致性:平均差异分别为2.38±0.82毫米汞柱(术前)、1.10±0.63毫米汞柱(术后)和4.99±3.00毫米汞柱(虚拟支架置入)。
完整的工作流程在一个快速、大多自动化的系统中实现,该系统可整合到临床环境中。据我们所知,这是首次在多个受试者上研究CoA的三种不同情况(术前——严重程度评估、支架置入后——随访、虚拟支架置入——治疗结果预测)。我们相信,在未来——经过更广泛的临床验证——我们的无创计算机模拟方法可以取代CoA的有创压力导管插入术。