Suppr超能文献

用于从扩散加权磁共振成像中计算具有减少伪影的表观扩散系数的同步分割和迭代配准方法。

Simultaneous segmentation and iterative registration method for computing ADC with reduced artifacts from DW-MRI.

作者信息

Veeraraghavan Harini, Do Richard K G, Reidy Diane L, Deasy Joseph O

机构信息

Medical Physics, Memorial Sloan Kettering Cancer Center, New York, New York 10065.

Radiology, Memorial Sloan Kettering Cancer Center, New York, New York 10065.

出版信息

Med Phys. 2015 May;42(5):2249-60. doi: 10.1118/1.4916799.

Abstract

PURPOSE

Apparent diffusion coefficient (ADC), derived from diffusion-weighted magnetic resonance images (DW-MRI), measures the motion of water molecules in vivo and can be used to quantify tumor response to therapy. The accurate measurement of ADC can be adversely affected by organ motion and imaging artifacts. In this paper, the authors' goal was to develop an automated method for reducing artifacts and thereby improve the accuracy of ADC measurements in moving organs such as liver.

METHODS

The authors developed a novel method of computing ADC with fewer artifacts, through simultaneous image segmentation and iterative registration (SSIR) of multiple b-value DW-MRI. The authors' approach reduces artifacts by automatically finding the best possible alignment between the individual b-value images and a reference DW image using a sequence of transformations. It selects such a sequence by an iterative choice of b-value DW images based on the accuracy of their alignment with the reference DW image. The authors' approach quantifies the accuracy of alignment between a pair of images using modified Hausdroff distance computed between the structures of interest. The structures of interest are identified by a user through strokes drawn in one or more slices in the reference DW image, which are then volumetrically segmented using GrowCut. The same structures are segmented in the remaining b-value images by transforming the user-drawn strokes through registration. The ADC values are computed from all the aligned b-value images. The images are aligned by using affine registration followed by deformable B-spline registration with cubic B-spline resampling.

RESULTS

The authors compared the results of ADC computed using their approach with ADC computed (a) without registration and (b) with basic affine registration of all b-value images to a chosen reference. The authors' approach was the most effective in reducing artifacts compared to the other two methods. It resulted in a mean artifact ratio (fraction of voxels in a structure with negative ADC over total number of voxels in the structure) of 2.7% versus 5.4% for affine registration and 32% for no registration for >200 tumors. The authors' approach also resulted in the lowest median standard deviation in the computed mean ADC for all tumors [0.05,0.09,0.07,0.58] compared to those from affine image registration [0.02, 0.14, 0.58, 0.79] and no image registration [0.64, 0.83, 0.83, 1.09] on tests where random displacement [8,10,12,16] pixels were introduced in multiple trials in the b-value images.

CONCLUSIONS

The authors developed a novel approach for reducing artifacts in ADC maps through simultaneous registration and segmentation of multiple b-value DW images. The authors' method explicitly employs a registration quality metric to align images. When compared to basic affine and no image registrations, the authors' approach produces registrations of greater accuracy with lowest artifact ratio and median standard deviation of the computed mean ADC values for a wide range of displacements.

摘要

目的

表观扩散系数(ADC)源自扩散加权磁共振成像(DW-MRI),用于测量体内水分子的运动,可用于量化肿瘤对治疗的反应。ADC的准确测量可能会受到器官运动和成像伪影的不利影响。在本文中,作者的目标是开发一种自动方法来减少伪影,从而提高在诸如肝脏等移动器官中ADC测量的准确性。

方法

作者通过对多个b值DW-MRI进行同时图像分割和迭代配准(SSIR),开发了一种计算伪影较少的ADC的新方法。作者的方法通过使用一系列变换自动找到各个b值图像与参考DW图像之间的最佳对齐方式来减少伪影。它基于b值DW图像与参考DW图像对齐的准确性,通过对b值DW图像进行迭代选择来选择这样的序列。作者的方法使用在感兴趣结构之间计算的修正豪斯多夫距离来量化一对图像之间对齐的准确性。感兴趣的结构由用户通过在参考DW图像的一个或多个切片中绘制笔画来识别,然后使用GrowCut进行体积分割。通过配准变换用户绘制的笔画,在其余b值图像中分割出相同的结构。从所有对齐的b值图像计算ADC值。通过使用仿射配准,然后进行具有三次B样条重采样的可变形B样条配准来对齐图像。

结果

作者将使用他们的方法计算的ADC结果与(a)未进行配准和(b)将所有b值图像与选定参考进行基本仿射配准计算的ADC结果进行了比较。与其他两种方法相比,作者的方法在减少伪影方面最有效。对于>200个肿瘤,其产生的平均伪影率(结构中ADC为负的体素占结构中总体素的比例)为2.7%,而仿射配准为5.4%,未进行配准为32%。与仿射图像配准[0.02, 0.14, 0.58, 0.79]和未进行图像配准[0.64, 0.83, 0.83, 1.09]相比,在b值图像的多次试验中引入随机位移[8,10,12,16]像素的测试中,作者的方法在计算所有肿瘤的平均ADC时也产生了最低的中位数标准差[0.05,0.09,0.07,0.58]。

结论

作者开发了一种通过对多个b值DW图像进行同时配准和分割来减少ADC图中伪影的新方法。作者的方法明确采用配准质量度量来对齐图像。与基本仿射配准和未进行图像配准相比,作者的方法在广泛的位移范围内产生了更高准确性的配准,具有最低的伪影率和计算平均ADC值的中位数标准差。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验