De Man Bruno, Wu Mingye, FitzGerald Paul, Kalra Mannudeep, Yin Zhye
Image Reconstruction Laboratory, GE Global Research, Niskayuna, New York 12309.
X-ray and CT Laboratory, GE Global Research, Shanghai 201203, China.
Med Phys. 2015 May;42(5):2740-51. doi: 10.1118/1.4921066.
Many recent computed tomography (CT) dose reduction approaches belong to one of three categories: statistical reconstruction algorithms, efficient x-ray detectors, and optimized CT acquisition schemes with precise control over the x-ray distribution. The latter category could greatly benefit from fast and accurate methods for dose estimation, which would enable real-time patient-specific protocol optimization.
The authors present a new method for volumetrically reconstructing absorbed dose on a per-voxel basis, directly from the actual CT images. The authors' specific implementation combines a distance-driven pencil-beam approach to model the first-order x-ray interactions with a set of Gaussian convolution kernels to model the higher-order x-ray interactions. The authors performed a number of 3D simulation experiments comparing the proposed method to a Monte Carlo based ground truth.
The authors' results indicate that the proposed approach offers a good trade-off between accuracy and computational efficiency. The images show a good qualitative correspondence to Monte Carlo estimates. Preliminary quantitative results show errors below 10%, except in bone regions, where the authors see a bigger model mismatch. The computational complexity is similar to that of a low-resolution filtered-backprojection algorithm.
The authors present a method for analytic dose reconstruction in CT, similar to the techniques used in radiation therapy planning with megavoltage energies. Future work will include refinements of the proposed method to improve the accuracy as well as a more extensive validation study. The proposed method is not intended to replace methods that track individual x-ray photons, but the authors expect that it may prove useful in applications where real-time patient-specific dose estimation is required.
近期许多计算机断层扫描(CT)剂量降低方法可归为三类之一:统计重建算法、高效X射线探测器以及对X射线分布进行精确控制的优化CT采集方案。后一类方法可从快速且准确的剂量估算方法中极大受益,这将实现针对患者的实时方案优化。
作者提出一种基于体素直接从实际CT图像中重建吸收剂量的新方法。作者的具体实现方式将距离驱动的笔形束方法与一组高斯卷积核相结合,前者用于模拟一阶X射线相互作用,后者用于模拟高阶X射线相互作用。作者进行了多项三维模拟实验,将所提出的方法与基于蒙特卡洛方法的真实情况进行比较。
作者的结果表明,所提出的方法在准确性和计算效率之间实现了良好的平衡。图像与蒙特卡洛估算结果在定性上具有良好的一致性。初步定量结果显示误差低于10%,但在骨骼区域除外,作者发现该区域存在较大的模型不匹配。计算复杂度与低分辨率滤波反投影算法相似。
作者提出了一种CT中的解析剂量重建方法,类似于在兆伏级能量的放射治疗计划中使用的技术。未来的工作将包括对所提出方法的改进以提高准确性以及进行更广泛的验证研究。所提出的方法并非旨在取代追踪单个X射线光子的方法,但作者预计它可能在需要针对患者进行实时剂量估算的应用中证明有用。