Hoynes-O'Connor Allison, Hinman Kristina, Kirchner Lukas, Moon Tae Seok
Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, MO 63130, USA.
Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, MO 63130, USA
Nucleic Acids Res. 2015 Jul 13;43(12):6166-79. doi: 10.1093/nar/gkv499. Epub 2015 May 15.
RNA-based temperature sensing is common in bacteria that live in fluctuating environments. Most naturally-occurring RNA thermosensors are heat-inducible, have long sequences, and function by sequestering the ribosome binding site in a hairpin structure at lower temperatures. Here, we demonstrate the de novo design of short, heat-repressible RNA thermosensors. These thermosensors contain a cleavage site for RNase E, an enzyme native to Escherichia coli and many other organisms, in the 5' untranslated region of the target gene. At low temperatures, the cleavage site is sequestered in a stem-loop, and gene expression is unobstructed. At high temperatures, the stem-loop unfolds, allowing for mRNA degradation and turning off expression. We demonstrated that these thermosensors respond specifically to temperature and provided experimental support for the central role of RNase E in the mechanism. We also demonstrated the modularity of these RNA thermosensors by constructing a three-input composite circuit that utilizes transcriptional, post-transcriptional, and post-translational regulation. A thorough analysis of the 24 thermosensors allowed for the development of design guidelines for systematic construction of similar thermosensors in future applications. These short, modular RNA thermosensors can be applied to the construction of complex genetic circuits, facilitating rational reprogramming of cellular processes for synthetic biology applications.
基于RNA的温度感应在生活于环境波动中的细菌中很常见。大多数天然存在的RNA热感受器是热诱导型的,具有较长的序列,并且在较低温度下通过将核糖体结合位点隔离在发夹结构中来发挥作用。在这里,我们展示了短的、热抑制型RNA热感受器的从头设计。这些热感受器在靶基因的5'非翻译区含有核糖核酸酶E(一种大肠杆菌和许多其他生物体中的天然酶)的切割位点。在低温下,切割位点被隔离在茎环结构中,基因表达不受阻碍。在高温下,茎环展开,导致mRNA降解并关闭表达。我们证明了这些热感受器对温度有特异性反应,并为核糖核酸酶E在该机制中的核心作用提供了实验支持。我们还通过构建一个利用转录、转录后和翻译后调控的三输入复合电路,展示了这些RNA热感受器的模块化。对这24种热感受器的全面分析为未来应用中系统构建类似热感受器的设计准则的制定提供了依据。这些短的、模块化的RNA热感受器可应用于复杂基因电路的构建,促进合成生物学应用中细胞过程的合理重编程。