Liu Zhuangzhuang, Liu Xinran, Huang Haiyan, Cao Feifei, Meng Qiu, Zhu Tingheng, Yin Jianhua, Song Xiaofei, Yu Zhiliang
College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, Zhejiang, China.
Hangzhou Chuhuan Science and Technology Co. Ltd., Hangzhou, Zhejiang, China.
Appl Environ Microbiol. 2025 Jan 31;91(1):e0148424. doi: 10.1128/aem.01484-24. Epub 2024 Dec 12.
Survivability and tolerance of polycyclic aromatic hydrocarbon (PAH)-degrading bacteria in harsh environments, especially under varying temperatures, are a bottleneck for the effective application of bioremediation. In this study, a temperature adaptation system (TAS) was constructed by combining a customized thermotolerant system with a customized cold-resistant system to realize the temperature-responsive regulation of the PAH-degrading mesophilic bacterium s US6-1. The innovative dual-pronged TAS strategy enabled the chassis strain to effectively tackle conditions under varying temperatures, ensuring robust biological activities across a broadened temperature spectrum and exhibiting the potential to realize the high-efficiency PAH degradation of US6-1 in bioremediation. Furthermore, the temperature-responsive regulation achieved using the TAS circuit is likely promising for creating intelligent microbial cell factories and avoiding precise temperature maintenance, making it highly useful for industrial applications.IMPORTANCEEnvironmental temperature is among the extremely important factors that determine the bioactivities of pollutant-degrading microorganisms in bioremediation. Effectively maintaining the survivability and tolerance of mesophilic microorganisms under harsh conditions and varying temperatures remains a challenge in the application of pollutant bioremediation. This study, for the first time, developed a temperature adaptation system by combining a customized thermotolerant system with a customized cold-resistant system to realize the temperature-responsive regulation of the polycyclic aromatic hydrocarbon (PAH)-degrading mesophilic bacterium s US6-1, thus diminishing the need for precise temperature control in PAH bioremediation.
多环芳烃(PAH)降解菌在恶劣环境中的生存能力和耐受性,尤其是在不同温度下的生存能力和耐受性,是生物修复有效应用的一个瓶颈。在本研究中,通过将定制的耐热系统与定制的耐寒系统相结合,构建了一个温度适应系统(TAS),以实现对PAH降解嗜温菌US6-1的温度响应调节。创新的双管齐下的TAS策略使底盘菌株能够有效应对不同温度下的条件,确保在更宽的温度范围内具有强大的生物活性,并展现出在生物修复中实现US6-1高效降解PAH的潜力。此外,使用TAS电路实现的温度响应调节可能有助于创建智能微生物细胞工厂并避免精确的温度维持,使其在工业应用中非常有用。
重要性
环境温度是决定生物修复中污染物降解微生物生物活性的极其重要的因素之一。在污染物生物修复的应用中,有效维持嗜温微生物在恶劣条件和不同温度下的生存能力和耐受性仍然是一个挑战。本研究首次通过将定制的耐热系统与定制的耐寒系统相结合,开发了一种温度适应系统,以实现对多环芳烃(PAH)降解嗜温菌US6-1的温度响应调节,从而减少了PAH生物修复中对精确温度控制的需求。