Guet Justine, Fichot Régis, Lédée Camille, Laurans Françoise, Cochard Hervé, Delzon Sylvain, Bastien Catherine, Brignolas Franck
Université d'Orléans, INRA, EA 1207, Laboratoire de Biologie des Ligneux et des Grandes Cultures, F-45067 Orléans France INRA, UR 0588 'Amélioration, Génétique et Physiologie Forestières' (AGPF), Centre de Recherche Val de Loire, CS 40001 Ardon, F-45075 Orléans Cedex 2, France.
Université d'Orléans, INRA, EA 1207, Laboratoire de Biologie des Ligneux et des Grandes Cultures, F-45067 Orléans France.
J Exp Bot. 2015 Aug;66(15):4643-52. doi: 10.1093/jxb/erv232. Epub 2015 May 15.
Xylem resistance to drought-induced cavitation is a key trait of plant water relations. This study assesses the genetic variation expressed for stem cavitation resistance within a population of a riparian species, the European black poplar (Populus nigra L.), and explores its relationships with xylem anatomy, water-use efficiency (WUE), and growth. Sixteen structural and physiological traits related to cavitation resistance, xylem anatomy, growth, bud phenology, and WUE were measured on 33 P. nigra genotypes grown under optimal irrigation in a 2-year-old clonal experiment in a nursery. Significant genetic variation was expressed for the xylem tension inducing 50% loss of hydraulic conductivity (Ψ50) within the studied population, as attested by the high value of broad-sense heritability estimated for this trait (H (2) ind = 0.72). Stem cavitation resistance was associated with xylem structure: the more cavitation-resistant genotypes exhibited lower hydraulic efficiency and higher mechanical reinforcement as assessed from stem xylem cross sections. By contrast, Ψ50 was not significantly related to shoot height increment, total above-ground dry mass, or bulk leaf carbon isotope discrimination, a proxy for intrinsic WUE. These findings indicate that the trade-offs between xylem resistance to cavitation, hydraulic efficiency, and mechanical reinforcement can occur at the within-population level. Given that the studied genotypes were exposed to the same environmental conditions and evolutionary drivers in situ, the trade-offs detected at this scale are expected to reflect true functional relationships.
木质部对干旱诱导空化的抗性是植物水分关系的一个关键特征。本研究评估了河岸物种欧洲黑杨(Populus nigra L.)种群内茎干抗空化性所表现出的遗传变异,并探讨了其与木质部解剖结构、水分利用效率(WUE)和生长的关系。在苗圃进行的一项为期两年的克隆实验中,对33个在最佳灌溉条件下生长的黑杨基因型,测量了与抗空化性、木质部解剖结构、生长、芽物候和WUE相关的16个结构和生理性状。在所研究的种群中,诱导50%导水率损失的木质部张力(Ψ50)表现出显著的遗传变异,该性状的广义遗传力估计值较高(H(2) ind = 0.72),证明了这一点。茎干抗空化性与木质部结构有关:从茎干木质部横切面评估,抗空化性越强的基因型,其水力效率越低,机械强化程度越高。相比之下,Ψ50与苗高增量、地上部总干质量或作为内在WUE指标的叶片碳同位素总体判别并无显著关系。这些发现表明,木质部抗空化性、水力效率和机械强化之间的权衡可能在种群内部水平上发生。鉴于所研究的基因型在原地暴露于相同的环境条件和进化驱动因素下,在这个尺度上检测到的权衡预计能反映真实的功能关系。