Suppr超能文献

MdMYB88 和 MdMYB124 通过调节苹果根系导管和细胞壁增强耐旱性。

MdMYB88 and MdMYB124 Enhance Drought Tolerance by Modulating Root Vessels and Cell Walls in Apple.

机构信息

State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China.

College of Forestry, Northwest A&F University, Yangling, Shaanxi 712100, P.R. China.

出版信息

Plant Physiol. 2018 Nov;178(3):1296-1309. doi: 10.1104/pp.18.00502. Epub 2018 Sep 6.

Abstract

Water deficit is one of the main limiting factors in apple ( × Borkh.) cultivation. Root architecture plays an important role in the drought tolerance of plants; however, research efforts to improve drought tolerance of apple trees have focused on aboveground targets. Due to the difficulties associated with visualization and data analysis, there is currently a poor understanding of the genetic players and molecular mechanisms involved in the root architecture of apple trees under drought conditions. We previously observed that MdMYB88 and its paralog MdMYB124 regulate apple tree root morphology. In this study, we found that MdMYB88 and MdMYB124 play important roles in maintaining root hydraulic conductivity under long-term drought conditions and therefore contribute toward adaptive drought tolerance. Further investigation revealed that MdMYB88 and MdMYB124 regulate root xylem development by directly binding and promoters and thus influence expression of their target genes under drought conditions. In addition, MdMYB88 and MdMYB124 were shown to regulate the deposition of cellulose and lignin root cell walls in response to drought. Taken together, our results provide novel insights into the importance of MdMYB88 and MdMYB124 in root architecture, root xylem development, and secondary cell wall deposition in response to drought in apple trees.

摘要

水分亏缺是苹果(×Borkh.)栽培的主要限制因素之一。根系结构在植物抗旱性中起着重要作用;然而,提高苹果树抗旱性的研究工作主要集中在地上目标上。由于可视化和数据分析的困难,目前对于苹果在干旱条件下的根系结构中涉及的遗传因子和分子机制了解甚少。我们之前观察到 MdMYB88 及其同源物 MdMYB124 调节苹果树根形态。在这项研究中,我们发现 MdMYB88 和 MdMYB124 在长期干旱条件下维持根系水力传导性方面发挥着重要作用,因此有助于适应干旱胁迫。进一步的研究表明,MdMYB88 和 MdMYB124 通过直接结合和启动子来调节根木质部发育,从而影响其在干旱条件下的靶基因表达。此外,还表明 MdMYB88 和 MdMYB124 调节纤维素和木质素细胞壁在根细胞中的沉积,以响应干旱。总之,我们的研究结果为 MdMYB88 和 MdMYB124 在苹果根系结构、根木质部发育和次生细胞壁沉积响应干旱方面的重要性提供了新的见解。

相似文献

1
MdMYB88 and MdMYB124 Enhance Drought Tolerance by Modulating Root Vessels and Cell Walls in Apple.
Plant Physiol. 2018 Nov;178(3):1296-1309. doi: 10.1104/pp.18.00502. Epub 2018 Sep 6.
2
Abscisic acid homeostasis is mediated by feedback regulation of MdMYB88 and MdMYB124.
J Exp Bot. 2021 Feb 2;72(2):592-607. doi: 10.1093/jxb/eraa449.
3
Apple MdZAT5 mediates root development under drought stress.
Plant Physiol Biochem. 2024 Aug;213:108833. doi: 10.1016/j.plaphy.2024.108833. Epub 2024 Jun 12.
6
Cold shock protein 3 plays a negative role in apple drought tolerance by regulating oxidative stress response.
Plant Physiol Biochem. 2021 Nov;168:83-92. doi: 10.1016/j.plaphy.2021.10.003. Epub 2021 Oct 4.
7
Apple SERRATE negatively mediates drought resistance by regulating MdMYB88 and MdMYB124 and microRNA biogenesis.
Hortic Res. 2020 Jul 1;7(1):98. doi: 10.1038/s41438-020-0320-6. eCollection 2020.
10
Apple TIME FOR COFFEE contributes to freezing tolerance by promoting unsaturation of fatty acids.
Plant Sci. 2021 Jan;302:110695. doi: 10.1016/j.plantsci.2020.110695. Epub 2020 Oct 17.

引用本文的文献

2
Ameliorating effect of zinc on water transport in rice plants under saline-sodic stress.
Front Plant Sci. 2025 Aug 14;16:1616333. doi: 10.3389/fpls.2025.1616333. eCollection 2025.
3
Drought recovery in plants triggers a cell-state-specific immune activation.
Nat Commun. 2025 Aug 29;16(1):8095. doi: 10.1038/s41467-025-63467-2.
4
Annual Dynamic Changes in Lignin Synthesis Metabolites in 'Jinsi'.
Metabolites. 2025 Jul 22;15(8):493. doi: 10.3390/metabo15080493.
5
Advanced imaging-enabled understanding of cell wall remodeling mechanisms mediating plant drought stress tolerance.
Front Plant Sci. 2025 Aug 8;16:1635078. doi: 10.3389/fpls.2025.1635078. eCollection 2025.
7
Physiologic, Genetic and Epigenetic Determinants of Water Deficit Tolerance in Fruit Trees.
Plants (Basel). 2025 Jun 10;14(12):1769. doi: 10.3390/plants14121769.

本文引用的文献

1
Genetic diversity of root system architecture in response to drought stress in grain legumes.
J Exp Bot. 2018 Jun 6;69(13):3267-3277. doi: 10.1093/jxb/ery082.
2
Knockdown of Rice MicroRNA166 Confers Drought Resistance by Causing Leaf Rolling and Altering Stem Xylem Development.
Plant Physiol. 2018 Mar;176(3):2082-2094. doi: 10.1104/pp.17.01432. Epub 2018 Jan 24.
5
Root xylem plasticity to improve water use and yield in water-stressed soybean.
J Exp Bot. 2017 Apr 1;68(8):2027-2036. doi: 10.1093/jxb/erw472.
6
DRO1 influences root system architecture in Arabidopsis and Prunus species.
Plant J. 2017 Mar;89(6):1093-1105. doi: 10.1111/tpj.13470.
8
Overexpression of the OsERF71 Transcription Factor Alters Rice Root Structure and Drought Resistance.
Plant Physiol. 2016 Sep;172(1):575-88. doi: 10.1104/pp.16.00379. Epub 2016 Jul 5.
9
Cell Wall Metabolism in Response to Abiotic Stress.
Plants (Basel). 2015 Feb 16;4(1):112-66. doi: 10.3390/plants4010112.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验