Suppr超能文献

CTP中的男性特异性心脏功能障碍:磷酸乙醇胺胞苷转移酶(Pcyt2)缺陷小鼠

Male-Specific Cardiac Dysfunction in CTP:Phosphoethanolamine Cytidylyltransferase (Pcyt2)-Deficient Mice.

作者信息

Basu Poulami, Alibhai Faisal J, Tsimakouridze Elena V, Singh Ratnesh K, Paglialunga Sabina, Holloway Graham P, Martino Tami A, Bakovic Marica

机构信息

Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON, Canada.

Cardiovascular Research Group, Biomedical Sciences, University of Guelph, Guelph, ON, Canada.

出版信息

Mol Cell Biol. 2015 Aug;35(15):2641-57. doi: 10.1128/MCB.00380-15. Epub 2015 May 18.

Abstract

Phosphatidylethanolamine (PE) is the most abundant inner membrane phospholipid. PE synthesis from ethanolamine and diacylglycerol is regulated primarily by CTP:phosphoethanolamine cytidylyltransferase (Pcyt2). Pcyt2(+/-) mice have reduced PE synthesis and, as a consequence, perturbed glucose and fatty acid metabolism, which gradually leads to the development of hyperlipidemia, obesity, and insulin resistance. Glucose and fatty acid uptake and the corresponding transporters Glut4 and Cd36 are similarly impaired in male and female Pcyt2(+/-) hearts. These mice also have similarly reduced phosphatidylinositol 3-kinase (PI3K)/Akt1 signaling and increased reactive oxygen species (ROS) production in the heart. However, only Pcyt2(+/-) males develop hypertension and cardiac hypertrophy. Pcyt2(+/-) males have upregulated heart AceI expression, heart phospholipids enriched in arachidonic acid and other n-6 polyunsaturated fatty acids, and dramatically increased ROS production in the aorta. In contrast, Pcyt2(+/-) females have unmodified heart phospholipids but have reduced heart triglyceride levels and altered expression of the structural genes Acta (low) and Myh7 (high). These changes together protect Pcyt2(+/-) females from cardiac dysfunction under conditions of reduced glucose and fatty acid uptake and heart insulin resistance. Our data identify Pcyt2 and membrane PE biogenesis as important determinants of gender-specific differences in cardiac lipids and heart function.

摘要

磷脂酰乙醇胺(PE)是内膜中含量最丰富的磷脂。由乙醇胺和二酰基甘油合成PE主要受CTP:磷酸乙醇胺胞苷酰转移酶(Pcyt2)调控。Pcyt2(+/-)小鼠的PE合成减少,结果导致葡萄糖和脂肪酸代谢紊乱,进而逐渐发展为高脂血症、肥胖和胰岛素抵抗。在雄性和雌性Pcyt2(+/-)心脏中,葡萄糖和脂肪酸摄取以及相应的转运蛋白Glut4和Cd36同样受损。这些小鼠心脏中的磷脂酰肌醇3激酶(PI3K)/Akt1信号传导也同样减少,活性氧(ROS)生成增加。然而,只有Pcyt2(+/-)雄性小鼠会出现高血压和心脏肥大。Pcyt2(+/-)雄性小鼠的心脏AceI表达上调,心脏磷脂富含花生四烯酸和其他n-6多不饱和脂肪酸,主动脉中的ROS生成显著增加。相比之下,Pcyt2(+/-)雌性小鼠的心脏磷脂未发生改变,但心脏甘油三酯水平降低,结构基因Acta(低)和Myh7(高)的表达发生改变。在葡萄糖和脂肪酸摄取减少以及心脏胰岛素抵抗的情况下,这些变化共同保护Pcyt2(+/-)雌性小鼠免受心脏功能障碍的影响。我们的数据表明,Pcyt2和膜PE生物合成是心脏脂质和心脏功能性别特异性差异的重要决定因素。

相似文献

1
Male-Specific Cardiac Dysfunction in CTP:Phosphoethanolamine Cytidylyltransferase (Pcyt2)-Deficient Mice.
Mol Cell Biol. 2015 Aug;35(15):2641-57. doi: 10.1128/MCB.00380-15. Epub 2015 May 18.
2
The development of a metabolic disease phenotype in CTP:phosphoethanolamine cytidylyltransferase-deficient mice.
J Biol Chem. 2009 Sep 18;284(38):25704-13. doi: 10.1074/jbc.M109.023846. Epub 2009 Jul 22.
3
Complementation of the metabolic defect in CTP:phosphoethanolamine cytidylyltransferase (Pcyt2)-deficient primary hepatocytes.
Metabolism. 2010 Dec;59(12):1691-700. doi: 10.1016/j.metabol.2010.03.022. Epub 2010 Apr 28.
4
Adaptations to excess choline in insulin resistant and Pcyt2 deficient skeletal muscle.
Biochem Cell Biol. 2017 Apr;95(2):223-231. doi: 10.1139/bcb-2016-0105. Epub 2016 Sep 6.
7
Developmental and metabolic effects of disruption of the mouse CTP:phosphoethanolamine cytidylyltransferase gene (Pcyt2).
Mol Cell Biol. 2007 May;27(9):3327-36. doi: 10.1128/MCB.01527-06. Epub 2007 Feb 26.
8
Mechanism of hypertriglyceridemia in CTP:phosphoethanolamine cytidylyltransferase-deficient mice.
J Lipid Res. 2012 Sep;53(9):1811-22. doi: 10.1194/jlr.M021881. Epub 2012 Jul 4.

引用本文的文献

2
Epigenome-wide methylation analysis shows phosphonoethylamine alleviates aberrant DNA methylation in NASH caused by Pcyt2 deficiency.
PLoS One. 2025 Mar 28;20(3):e0320510. doi: 10.1371/journal.pone.0320510. eCollection 2025.
3
Circadian Influences on Myocardial Ischemia-Reperfusion Injury and Heart Failure.
Circ Res. 2024 Mar 15;134(6):675-694. doi: 10.1161/CIRCRESAHA.123.323522. Epub 2024 Mar 14.
4
Role of Stearoyl-CoA Desaturase 1 in Cardiovascular Physiology.
Int J Mol Sci. 2023 Mar 14;24(6):5531. doi: 10.3390/ijms24065531.
5
Bilayer Forming Phospholipids as Targets for Cancer Therapy.
Int J Mol Sci. 2022 May 9;23(9):5266. doi: 10.3390/ijms23095266.
8
Importance of lipids for upper motor neuron health and disease.
Semin Cell Dev Biol. 2021 Apr;112:92-104. doi: 10.1016/j.semcdb.2020.11.004. Epub 2020 Dec 13.

本文引用的文献

2
Short-term disruption of diurnal rhythms after murine myocardial infarction adversely affects long-term myocardial structure and function.
Circ Res. 2014 May 23;114(11):1713-22. doi: 10.1161/CIRCRESAHA.114.302995. Epub 2014 Mar 31.
3
Deficiency of cardiac Acyl-CoA synthetase-1 induces diastolic dysfunction, but pathologic hypertrophy is reversed by rapamycin.
Biochim Biophys Acta. 2014 Jun;1841(6):880-7. doi: 10.1016/j.bbalip.2014.03.001. Epub 2014 Mar 12.
4
Cardiac metabolism and its interactions with contraction, growth, and survival of cardiomyocytes.
Circ Res. 2013 Aug 16;113(5):603-16. doi: 10.1161/CIRCRESAHA.113.302095.
6
Insulin resistance: metabolic mechanisms and consequences in the heart.
Arterioscler Thromb Vasc Biol. 2012 Sep;32(9):2068-76. doi: 10.1161/ATVBAHA.111.241984.
8
Myocardial triacylglycerol metabolism.
J Mol Cell Cardiol. 2013 Feb;55:101-10. doi: 10.1016/j.yjmcc.2012.06.018. Epub 2012 Jul 10.
9
Sex-specific differences in essential fatty acid metabolism.
Am J Clin Nutr. 2011 Dec;94(6 Suppl):1914S-1919S. doi: 10.3945/ajcn.110.000893. Epub 2011 Nov 16.
10
Phospholipid homeostasis and lipotoxic cardiomyopathy: a matter of balance.
Fly (Austin). 2011 Jul-Sep;5(3):234-6. doi: 10.4161/fly.5.3.15708. Epub 2011 Jul 1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验